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EVALUATION OF TWO APPLICATIONS OF SPECTRAL MIXING MODELS TO IMAGE FUSION 

by 

Gary D. Robinson 

ABSTRACT 

Many applications in remote sensing require merging low-resolution multispectral or hyperspectral images with 

high-resolution panchromatic images to create high-resolution multispectral or hyperspectral material maps. A 

number of methods are currently in use to produce such hybrid imagery. Until now, these methods have only 

been evaluated independently, and have not been compared to one another to determine an optimum method. 

This research performed a quantitative test of three image fusion procedures. The first method involves 

first sharpening low-resolution multispectral data using the panchromatic image, to produce a high-resolution 

multispectral image. This image was then separated into a series of high-resolution images which provided a 

mapping of materials within the scene. The second method involved first separating the low-resolution 

multispectral data into a series of material maps using a recently developed adaptive unmixing algorithm. These 

maps, along with the panchromatic image, were used to produce high-resolution material maps. The final 

method examined involved creating the low-resolution material maps using traditional image-wide unmixing 

methods. The resulting images, along with the panchromatic image, were used to produce sharpened material 

maps. These three image fusion procedures were evaluated for their radiometric and unmixing accuracy. It is 

hoped that the optimum method identified by this research will enable analysts to more easily and accurately 

produce high-resolution material maps for various applications. 
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EVALUATION OF TWO APPLICATIONS OF SPECTRAL MIXING MODELS TO IMAGE FUSION 

by 

Gary D. Robinson 

ABSTRACT 

Many applications in remote sensing require merging low-resolution multispectral or hyperspectral images with 

high-resolution panchromatic images to create high-resolution multispectral or hyperspectral material maps. A 

number of methods are currently in use to produce such hybrid imagery. Until now, these methods have only 

been evaluated independently, and have not been compared to one another to determine an optimum method. 

This research performed a quantitative test of three image fusion procedures. The first method involves 

first sharpening low-resolution multispectral data using the panchromatic image, to produce a high-resolution 

multispectral image. This image was then separated into a series of high-resolution images which provided a 

mapping of materials within the scene. The second method involved first separating the low-resolution 

multispectral data into a series of material maps using a recently developed adaptive unmixing algorithm. These 

maps, along with the panchromatic image, were used to produce high-resolution material maps. The final 

method examined involved creating the low-resolution material maps using traditional image-wide unmixing 

methods. The resulting images, along with the panchromatic image, were used to produce sharpened material 

maps. These three image fusion procedures were evaluated for their radiometric and unmixing accuracy. It is 

hoped that the optimum method identified by this research will enable analysts to more easily and accurately 

produce high-resolution material maps for various applications. 
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1. INTRODUCTION 

1.1 Spatial vs Spectral Resolution 

Remote sensing instruments are capable of obtaining images with high spatial resolution, or high 

spectral resolution. Spatial resolution refers to how well a sensor can resolve the spatial details of a scene. It is 

often measured by the sensor's Ground Instantaneous Field of View (GIFOV). The GIFOV is the projection of 

the detector aperture, through the sensor's optics, onto the ground. A smaller GIFOV refers to a sensor with 

higher spatial resolution. A small GIFOV can be obtained by using a small detector. However, in order to 

obtain a sufficient number of photons for useful imaging, and to maintain an adequate signal to noise level, the 

detector must be sensitive over a relatively wide spectral band. Spectral resolution refers to the width of the 

bandpass where radiance is measured; the narrower (finer) the spectral resolution, the more bands that can be 

obtained over a specific spectral range. To obtain high spectral resolution, a narrow filter or grating is added to 

the detector. In order to obtain sufficient photons the detector must be large, leading to a large GIFOV and low 

spatial resolution. Two types of remote sensing platforms are commonly used. One type creates high spatial 

resolution panchromatic images (typically in the visible or near infrared region of the spectrum), and the other 

type creates multispectral or hyperspectral images with fine spectral resolution. 

There will always be some trade-off between spatial and spectral resolution. Images with high spatial 

resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to 

identify materials. With different sensors collecting information over the same area, it is useful to merge the 

data into a hybrid product containing the useful information of both platforms. Such a hybrid image with high 

spatial and spectral resolution can be used to create detailed material maps. 



1.2 Correlation 

Generating hybrid images requires a large amount of correlation in images. Consider the LANDSAT 

Thematic Mapper (TM) which has six spectral bands in the reflective region ranging from 0.400 um to 2.350 

urn, and the French SPOT panchromatic band which ranges from 0.510 um to 0.730 urn. As shown in Figure 1, 

there is spectral overlap between SPOT and TM bands 2 and 3, and the digital counts in the overlap region will 

be highly correlated. Hybrid images of these bands will show definite, accurate improvements over both 

original input images. However, fusing SPOT with the infrared bands (e.g. 5 & 7) will be less straightforward. 

Fusion of these poorly correlated bands requires predictive models to estimate the high-resolution data. 

TM7 ■■ 
TM5 m 
TM4 ■ 

SPOT Ran M 
TM3 1 
TM2 ■ 
TM1 I 
 1 1— —i 1  

0.5 1 1.5 

Wavelength (^m) 

2.5 

Figure 1: Spectral Bandpasses of TM and SPOT Pan Bands 

Most multispectral sensors have bands whose bandpasses range through several regions of the 

spectrum, including the visible (VIS), near infrared (NIR), and short wave infrared (SWIR). A typical 

panchromatic sensor will cover a much shorter portion, restriction itself to the VIS or NIR (for example) 

regions. So image fusion will almost always involve predicting digital counts for poorly correlated bands. The 



different methods for performing fusion (discussed in the next chapter) have varying levels of effectiveness. 

Some level of optimizing to obtain the best estimate will always be involved. 

1.3 Mixed Pixels 

The region on the ground represented by one pixel in an image may contain a number of materials. 

The definition of the materials depends on the specific imaging application. For example, if one is looking for 

broad classifications, pixels may be classified as forest, urban, or water and, except along borders between 

regions, most pixels can be considered 100% "pure". However, if the application is more specific, the same 

pixels can be considered mixtures of deciduous vs coniferous vegetation, or residential vs commercial, or clear 

vs silty water. So the determination of whether a pixel is mixed or pure often depends upon the specific 

application. 

It is helpful to divide mixtures of materials into three scenarios. Consider first a situation where there 

are linear interactions between the materials and incident photons. Distinct materials may be mixed at various 

spatial scales. A mixture is defined as aggregate if materials are combined at the macroscopic scale. The total 

radiance leaving the scene is a spatial average of the individual materials, however, the individual materials 

cannot be spatially separated by the sensor. An areal mixture is also characterized by linear interactions, but 

involves situations where individual materials can be resolved by the (typically high-resolution) sensor. 

The third mixture involves materials combined at the microscopic level. This intrinsic mixture 

involves multiple interactions between materials and incident photons. The average radiance typically depends 

on a complex combination of the individual material properties. Such mixtures require non-linear models and 

were not addressed in this work. The three types of mixtures are demonstrated in Figure 2. 
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Figure 2: Basic Mixture Types 

Hybrid images can be produced by fusing low-resolution multispectral images with high-resolution 

panchromatic images. The pixels of the low-resolution multispectral image (LRXS), often called superpixels, 

cover larger areas of the ground and correspond to several pixels, often called subpixels, of the high-resolution 

panchromatic image (HRP) as illustrated in Figure 3. If the two images have been properly registered, then each 

LRXS superpixel corresponds to a collection of HRP subpixels equivalent in size to the larger low-resolution 

pixel. 
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Figure 3: Illustration of Superpixels and Subpixels 

The scale factor of the fusion refers to the difference in the GIFOV between the LRXS and HRP 

images. For example, consider the case where the GIFOV of the LRXS is 30m and that of the HRP is 10m. 

Then the scale factor is defined to be 

Scale Factor = 
GIFOV LRXS 30 

= 3 Eq. 1 
GIFOV HRP 10 

Such a fusion scenario will produce a hybrid image with a 3-times (3X) improvement in GIFOV. This hybrid 

image can then be used to create detailed material maps. 

1.5 Obtaining High Resolution Material Maps 

There are two steps in creating the detailed material maps previously mentioned. First, the 

multispectral (or hyperspectral) image is used to identify the materials in the scene. This process, often referred 

to as spectral unmixing, generates several material maps, where each map is an estimate of the percentage of a 



specific material within the scene. Second, the material maps and the panchromatic image of the same area 

serve as constraining inputs to produce sharpened material maps, resulting in high-resolution material maps. 

One method of image fusion uses the unmix and then sharpen procedure (See Figure 4). An alternate 

method, theoretically producing identical results, utilizes a sharpen and unmix process. The sharpening 

produces a high-resolution multispectral image which is then unmixed into high-resolution material maps. There 

is little published work of image fusion using a sharpen and unmix process (See Figure 5). However, there are 

several applications which utilize sharpening without further processing (unmixing) of the high-resolution 

multispectral images. 
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Figure 4: Unmix and Sharpen Image Fusion Process 
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Figure 5: Sharpen and Unmix Image Fusion Process 

1.6 Outline 

This research implemented image fusion via a sharpen and unmix process and compared the resulting 

high-resolution material maps to those obtained via an unmix and sharpen process. The unmix and sharpen 

process employed two methods for producing the low-resolution material maps. A recently developed adaptive 

unmixing algorithm was compared to traditional unmixing methods. Sharpening was performed on the low- 

resolution material maps produced by the two unmixing algorithms, and the resulting high-resolution material 

maps were compared to those generated via the sharpen and unmix process. All methods were evaluated for 

radiometric fidelity , unmixing accuracy, and enhanced visual display. Quantifiable results are available because 

synthetic imagery was used in addition to real images. 



This document is organized as follows. Section two provides background reference on various image 

fusion techniques. The specific methods used in this research are discussed in some detail. Section three 

provides an overview of the test method, including details on steps involved in the image enhancement methods. 

The quantitative and subjective results of the tests are detailed in section four. The results show that the 

sharpen/unmix method produces more error than unmixing with the adaptive algorithm and then sharpening. 

Fraction maps created by the sharpen/unmix method are more visually acceptable, containing more high- 

frequency information than fraction maps produced by the unmix/sharpen methods. The final section indicates 

additional avenues of exploration in the area of image fusion. 



2. BACKGROUND AND LITERATURE REVIEW 

Image fusion involves combining different images into a new hybrid image. The original images may 

be products of different remote sensing platforms, and may have different spectral and spatial resolutions. For 

example, we might wish to merge data obtained from the Landsat Thematic Mapper (TM) with that obtained 

from the French Systeme Pour l'Observation del la Terre (SPOT). The TM has seven spectral bands ranging 

from .45 to 2.35 microns. Six of the bands (1 - 5 and 7) have 30 meter spatial resolution. The seventh band 

(band 6) provides thermal information and has 120 meter spatial resolution. SPOT has 3 spectral bands in the 

visible and near infrared region with 20 meter spatial resolution. It also has a panchromatic band with 10 meter 

spatial resolution. The most efficient method for an analyst to examine imagery from these two platforms would 

be to combine the useful information from both into a single image. 

Landsat TM and SPOT are not the only types of data that can be merged. Daily et al. (1979) and 

Chavez et al. (1983) merged airborne and Shuttle Imaging Radar (SIR-A) images with Landsat Multispectral 

Scanner (MSS). Lauer and Todd (1981) combined imagery from Landsat MSS with data from the Return Beam 

Vidicon (RBV). The next generation of hyperspectral space-based sensors is currently in the design phase. 

These sensors will have high spectral resolution, but very poor spatial resolution. The pending increase in 

sensors will increase the need for better image fusion applications. 

2.1 Existing Image Fusion Methods 

There are several existing methods to perform image fusion. Munechika (1990) groups these methods 

into three classes. The first class is called "Merging Images for Enhancement of Visual Display". These 

algorithms are primarily concerned with optimizing an image display so that it looks good for the analyst. The 

second class is called "Image Merging by Separate Manipulation of Spatial Information". These algorithms 



merge data by separate manipulation of the spectral and spatial information. The final class is called "Image 

Merging to Maintain Radiometrie Fidelity". These algorithms merge data, while ensuring that the radiometric 

accuracy of the original multispectral data is maintained or degraded only minimally. 

2.1.1 Image Merging for Enhancement of Visual Display 

Image fusion routines that enhance visual display have also been referred to as ad hoc methods. The 

primary concern is to optimize the display for analysis purposes. There is no concern in preserving the 

radiometric accuracy of the multispectral data. One method used employs histogram specification and contrast 

stretching. Two examples of generic methods are given by the equations (Welch & Ehlers, 1987) 

XS;    = a, X ^ X P + b; Eq. 2 

or 

XS;    =  &.  X (w,XSi  ® W2P)  + bs Eq. 3 

where XS; is the digital count (DC) for a pixel in the i* band of the high-resolution hybrid image, XSj is the 

digital count for the corresponding pixel in the original multispectral image, P is the digital count for the 

corresponding pixel in the high-resolution panchromatic image, wi and w2 are weighting factors, and ai and bj 

are scaling factors to optimize the hybrid image for the dynamic range of the display system, and ® is an 

operator which could be addition, subtraction, multiplication, ratio, etc. 

A simpler ad hoc technique to enhance a RGB display is to replace the green channel with the 

panchromatic data, leaving the red and blue channels unchanged. Since the human visual system is most 

sensitive to green, the display looks sharper to the viewer. 
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2.1.2 Image Merging by Separate Manipulation of Spatial Information 

An image can be assumed to contain a low frequency and high frequency component. The low 

frequency data contains the spectral information, while the high frequency data contains the spatial information. 

The image fusion algorithms in this class manipulate the spatial (high frequency) component while preserving 

the spectral component to generate enhanced images. Braun (1992) compared three algorithms of this class. 

2.1.2.1 Intensity Hue Saturation (IHS) 

The IHS technique (Chavez, 1991) can be applied to three bands of multispectral data. Three 

multispectral bands are treated as colors (e.g. red, green, blue). The RGB multispectral image is transformed to 

an intensity, hue, saturation space, where the intensity is assumed to contain most of the spatial information, and 

the hue and saturation are assumed to contain most of the spectral information. The panchromatic image is then 

substituted for the intensity of the multispectral image, and an inverse transformation is performed to return the 

image to a RGB format. The result is a high-resolution image whose spatial content is derived from the 

panchromatic image, and whose color (spectral) content is derived from the original multispectral data. 

This technique is based on the assumption that edge information (essentially the spatial content) is 

contained within the intensity. The IHS transformation works as long as the panchromatic image is highly 

correlated with the bands of the multispectral image. 

2.1.2.2 Principal Components Analysis (PCA) 

The PCA technique (Chavez, 1991) involves calculating the principal component of the multispectral 

image. This calculation utilizes linear algebra, and transforms a vector of correlated data into orthogonal 

components. The first principal component contains data common to all the spectral bands, and should be 
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similar to the panchromatic image. The first principal component image is replaced by the high-resolution 

panchromatic image. All remaining principal components are assumed to contain the spectral components and 

are untouched. An inverse principal component is then performed to obtain a new hybrid image. 

2.1.2.3 High Pass Filter (HPF) 

The high pass filter technique (Schowengerdt, 1980) is based on the theory that an image is composed 

of a highpass filtered image and a lowpass filtered image. The hybrid image can be constructed by using the 

high-resolution image to replace the missing edge information in the low-resolution image using the equation 

HRXSj = LRXSj +KrHPAN Eq. 4 

where HRXSj is the digital count of a pixel in the j* band of the hybrid multispectral image, LRXSj is the digital 

count of the corresponding pixel in the j* band of the low-resolution multispectral image, Kj is a constant 

designed to control the contrast of the hybrid image, and HPAN is the digital count of the corresponding pixel in 

the high-resolution band used for the edge details. Kj is chosen appropriately to ensure that the contrast in the 

hybrid bands is weighted equally by the low-resolution and high-resolution images. 

2.1.3   Image Merging Which Maintains Radiometrie Fidelity 

All of the previously mentioned image fusion methods primarily enhance visual display. The spatial 

resolution of the hybrid multispectral image improves compared to the original multispectral image. However, 

the exact radiometric values of the multispectral image are often lost in the process. Any algorithm used to 

identify materials in a multispectral image relies inherently on the accuracy of the radiometric values within that 

image. In order to exploit the information in the hybrid images by use of an automated routine, the radiometry 

of the hybrid image must match as closely as possible the radiometry of the original multispectral image. The 

three methods discussed in this class are described by Braun (1992). 
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2.1.3.1 Ratio Methods 

The ratio methods are simple image fusion techniques designed to maintain the radiometry of the 

original image. They require that the panchromatic sharpening image be highly correlated with the multispectral 

image. The procedure begins by dividing the pixels of the multispectral image into subpixels which are equal in 

size to the pixels of the high-resolution panchromatic image. 

2.1.3.1.1  Pradines' Method 

Pradines (1986) uses the following equation to merge SPOT spectral bands with the SPOT 

panchromatic band: 

HRP 
HRXS;  = LRXS; >;   EHRP Eq5 

superpixel 

where HRXS; is the digital count of a subpixel in the high-resolution hybrid image in the i* band, LRXS; is the 

digital count of the corresponding subpixel in the i* band of the multispectral image, and HRP is the digital 

count of the corresponding subpixel in the high-resolution panchromatic image. 

2.1.3.1.2 Price's Method 

The disadvantage of the Pradines routine is that it does not account for bands that are not highly 

correlated with the panchromatic image. Price (1987) proposes a two-stage process for dealing with bands that 

are either weakly or strongly correlated with the panchromatic image. A ratio is used for the strongly correlated 

bands, which can be written as 

LRXSi = a, • HRPS + bf Eq. 6 
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where at and b; are least squares regression coefficients of a linear fit in the i* band, and HRPS is the digital 

count of an averaged panchromatic image superpixel. The regression coefficients are found by regressing HRPS 

against LRXSj. The high-resolution multispectral image (HRXS) is obtained by 

HRXSJ = a; • HRP + b; Eq. 7 

and 

LRXS, • HRXSJ 
HRXS;  =    z±=, L Eq. 8 

HJ\X.oi s 

where HRXS; is the digital count of the estimate for the i* band of a high-resolution multispectral image, and 

HRXSiiS is the average of HRXS; over a superpixel. 

Braun (1992) reports that stage 1 of the Price routine produces results similar to the Pradines technique. 

The main difference is that Price uses an estimate for the high-resolution multispectral bands, whereas Pradines 

simply uses the high-resolution panchromatic image. 

Price uses a Look-Up Table (LUT) in stage 2 of his technique for dealing with uncorrelated spectral 

bands. The LUT is created by first examining the HRPS values, and recording the corresponding digital count 

in the low-resolution multispectral image. The mean of these multispectral pixels is calculated and the value is 

entered into the LUT. Figure 6 shows an example look-up table. The values in the LUT relate the HRPS digital 

counts to the multispectral digital counts in the uncorrelated bands. Now the high-resolution estimates are 

calculated using the LUT values for HRXS' in equation 8. 
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Average Pan DC 

(HRPS) 

DC from Weakly Correlated 
Multispectral Bands 

(LRXSj) Mean Low Res Multispectral DC 

0 8,8,8,7,9,... 8 

1 21,24,22,20,23,... 22 

2 17,14,13,16,... 15 

255 

Figure 6: Example Look-Up Table 

2.1.3.1.3 DIRS Method (Simple Ratio) 

Munechika (1990) presents a routine which is easier to implement than Price's method. This method is 

designed to provide as much radiometric accuracy as possible, and forms the basis for the Extended Ratio and 

Global Coefficient methods which will be discussed in later sections. This method is used by the Digital 

Imagery Processing and Remote Sensing (DIRS) laboratory at RIT and is often referred to as the DIRS Method. 

Munechika's method begins by pixel replicating and blurring the high-resolution panchromatic image 

so that its subpixels are the same size as the pixels of the low-resolution multispectral image. The panchromatic 

image is registered to the multispectral image to preserve the radiometry of the multispectral image. 

The simple ratio method is given by the equation 

HRXS; = HRP 
LRXS; 

HRPS 
Eq. 9 

This method works well for spectral bands that are highly correlated with the panchromatic image. It can easily 

be shown that this equation is radiometrically correct by 

N   LRXSj N 

j = 1 HRPS  
HRPJ      LRXSj    jilHRPj      LRXSj     

~ =      • =       HRPS=LRXS; 
N HRPj N HRPS 

! 
HRXSS = Eq.   10 
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which shows that the average of the digital counts of the hybrid image over a superpixel equals the digital count 

of the corresponding pixel in the original multispectral image. 

Munechika's method does not work well on mixed pixels, so an enhancement is presented in 

Munechika et. al. (1993). For the case of a mixed pixel, the ratio of LRXS/ HRPs is not always the best. In this 

case, a digital count of a panchromatic subpixel is compared to the mean digital counts of neighboring 

superpixels. If the subpixel's ratio is closer to that of one of the neighboring superpixel values, then that 

superpixel's mean is used for the LRXS/HRPS ratio in equation 9. This mixed pixel is not necessarily 

radiometrically accurate on average over a superpixel, but its quantitative performance on a subpixel case 

exceeds that of the simple ratio method. 

2.1.3.1.4 Extended Ratio 

The simple ratio method does not maintain radiometric accuracy for weakly correlated bands. The 

extended ratio method is designed to deal with the case of poor spectral correlation between a given 

multispectral band and the panchromatic band, and is used in conjunction with the simple ratio method, with the 

ratio method implemented for correlated bands. A liner relationship is created between the weakly correlated 

band, the panchromatic band, and any previously predicted band as 

LRXSk = a0 + a, HRPS + a2 LRXSS + a3 LRXSj + ... Eq. n 

where k refers to a weakly correlated multispectral band and i and j are strongly correlated, previously predicted 

bands. The coefficients a0, ai, etc. are obtained by performing a regression in a localized neighborhood around 

the target superpixel using equation 11. See Figure 7 for a diagram of possible superpixel neighborhoods. The 

regression is first performed using only one strongly correlated/previously predicted band. Additional bands are 

used if the residuals remain sufficiently large. 
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Figure 7: Possible Superpixel Neighborhoods in Extended Regression Method 

Once the regression equation is satisfied, the coefficients are used to determine the digital count of the 

hybrid image subpixels using 

HRXSk = a0 + a! HRP + a2 HRXSi + a3 HRXSj + ... Eq. 12 

where HRXSj is the digital count of a hybrid subpixel in band i (previously predicted using the ratio method). 

The advantage of the extended regression method is that it allows the hybrid image to be predicted 

even for poorly correlated bands. In addition, by solving for the coefficients in a localized region around the 

target superpixel, the extended regression method tends to use superpixels with the same material types as the 

target superpixel. A problem with the extended regression model is that it produces noisy images when used in 

areas with uniform digital counts. Any small change in a sharpening band or errors in a previously predicted 

band are exaggerated when used in estimating hybrid pixel values. However, Braun (1992) notes that extended 
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regression produces improved results over the simple ratio when used in regions where there is much brightness 

variation within a material type. 

2.1.3.1.5  Global Regression Method 

The global regression method is designed to overcome some of the limitations of the extended 

regression technique. Rather than performing a regression in a localized window around a subpixel, data from 

the entire image is used. The assumption used is that the best data to solve the regression is from superpixels 

with the same spectral characteristics as the target subpixel. First, an unsupervised classifier with a large 

number of classes is used on the multispectral and panchromatic images. A class map is created with all pixels 

classified into some spectral class (note that no class type needs to be assigned to these classes). The regression 

in equation 11 is applied using pixels that are in the same class as the target subpixel. The remaining portion of 

the global regression routine is similar to that for the extended regression technique, with bands incrementally 

added until the residuals of the regression equation are below a desired threshold. Equation 12 is employed with 

the coefficients obtained from the regression to obtain the high-resolution multispectral image. 

Braun (1992) notes that the global regression technique, on average, outperforms the extended 

regression routine. The extended regression produces noisy results in low frequency areas, whereas the global 

regression softens the noise while preserving the edges. 

2.1.3.2 Algorithm Summary 

Image fusion works best when the low-resolution multispectral image bands are highly correlated with 

the high-resolution panchromatic band. When there is weak correlation, the quality of the image fusion will be 

degraded, and routines that separately manipulate spatial data may introduce radiometric inaccuracies. The 

Intensity Hue Saturation method is in some ways the least robust because it can only be applied to three bands. 

Braun (1992) states that the routines designed to maintain radiometric accuracy work better than those that 
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separately manipulate the spatial data. The Price and Munechika methods produce similar results in the 

correlated bands. The simple ratio technique by Munechika forms the basis for the extended and global 

regression methods. The extended regression routine works best when scenes contain high frequency 

information, and the global regression works best when the scene contains medium or low frequency. 

2.2 Spectral Unmixing Methods 

The multispectral remote sensing platform typically has poor spatial resolution. The large pixel sizes 

imply that the majority of the pixels in the multispectral image will be mixed. Applications such as mapping 

vegetation or locating mineral resources require such mixed pixels to be separated into the individual 

constituents (often called endmembers) whose radiances contribute to the single mixed pixel value. Spectral 

unmixing transforms the digital counts of mixed pixels into a series of maps which are estimates of the 

percentage or abundance of the individual materials within a scene. 

Spectral unmixing has been used to map many different materials. Images from the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) were used to create individual maps of green vegetation, 

nonphotosynthetic vegetation, and soil (Roberts etal 1993). AVIRIS data was also used to map desert 

vegetation (Smith 1990). Hyperspectral sensors such as AVIRIS are ideally suited to spectral unmixing 

applications due to the requirement that there be more spectral bands than constituents to be unmixed. 

Spectral unmixing can classify images using scene-derived endmembers or reference endmembers 

(reflectance spectra measured by field or laboratory instruments). When reference endmembers are used, 

atmospheric compensation and the responsivity of the sensor must be taken into account. 

Two methods of spectral unmixing are prevalent in available research literature. The Spectral Mixture 

Analysis of Smith et al (1990) and Roberts et al (1993) provides estimates of the percentages of endmembers 

employing classical unmixing methods, whereas the Tricorder method of Clark et al (1990) produces the 

abundances by searching for specific absorption features characteristic of individual endmembers. 
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2.2.1 Tricorder 

Clark et al (1990) employ a method referred to as Tricorder to determine the individual endmembers 

within the mixed pixels of a multispectral image. Tricorder is similar to spectroscopic analysis employed by 

scientists, and employs the same steps used to analyze a spectrum. Endmembers are identified by looking for 

specific absorption features. For example, kaolinite and dolomite have characteristic absorption features which 

Tricorder can locate in the spectrum of a mixed pixel. 

The following definition of absorption band depth is employed by the algorithm 

D-   1-Rc Eq.   13 

where Rb is the reflectance in the center of an absorption feature, and Rc is the reflectance of the continuum at 

the center of the feature. The continuum is the shape the spectrum would take if the absorption feature were not 

present. Typically, it is created by simply connecting the wings of the absorption feature with a straight line. 

See Figure 8. 

The Tricorder algorithm requires that the data be corrected for atmospheric effects. Green et al (1993) 

present a method to calibrate AVIRIS data for atmospheric effects. Assuming the data is corrected for 

atmosphere, Tricorder uses the following steps. 1) Convolve the library spectra with the sensor response so it 

resembles the image data. 2) Convert the image data from digital counts to apparent reflectance. 3) Remove 

the continuum in the library and image spectra using 

LcU) = ^Jä) Eq- 14 

and 

Sca) = C^) E* 15 
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where Lc is the continuum-removed library reflectance spectrum, L is the library spectrum, Sc is the continuum- 

removed sensor spectrum, S is the sensor spectrum, and CL and Cs are the continuum spectra estimated from a 

fit through the wings of the absorption feature. 
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Figure 8: Sample Spectra Using Tricorder Algorithm (Clark et al, 1990) 
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The absorption features in the reference spectrum are typically stronger than in the spectrum recorded 

by the remote sensor, so the spectral contrast of the reference must be changed to match the contrast of the 

sensor spectrum. The contrast of the reference spectrum is modified by 

Lc +k 
Lc = = a + bLc Eq.  16 

1 T Jv 

where Lc is the contrast reduced spectrum that best matches observation, k is a constant, and a = k/(l+k) and b 

= 1/(1+k). 

The coefficients a & b must be determined such that they give the best fit of Lc to the observed 

spectrum. A least square fit is performed using 

!Sc-blLc a =  
n 

^SCLC 
2>, z2**-c 

n 

14 (sa b = 

and 

k-   ^ k "      b Eq.  17 

where n is the number of spectral channels in the fit. A material map is produced by fitting a reference spectrum 

to the spectrum of each pixel in a hyperspectral data set. The band depth is proportional to the abundance of the 

material and the goodness of fit provides a confidence factor. By plotting D*R2, the bright areas will show high 

abundance with high confidence in the derived solution. A material is typically characterized by more than one 

absorption feature, so several features may be used by the algorithm. The features may also be weighted, so that 

some absorption features take precedence over others. 
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2.2.1.1 Tricorder Summary 

Clark et al (1990) use AVIRIS data to demonstrate the Tricorder algorithm, and report good success. 

This method can even create maps of materials with complicated absorption features (e.g. the kaolinite doublet). 

Spectral mixture analysis (discussed in the next section) can be accomplished without atmospheric 

compensation. However, the Tricorder algorithm will not work with data that has not been corrected for 

atmospheric effects. Another contrast between the two methods is the fact that unmixing with the Tricorder 

algorithm may only be performed on hyperspectral data, whereas spectral mixture analysis can be performed 

(with a limited number of endmembers) on multispectral images. Tricorder is also less sensitive to signal to 

noise in individual channels because many channels are used to map an absorption feature. An inexperienced 

user cannot simply start working and achieving successful results because expert knowledge of spectroscopy by 

the user is required for this algorithm. Tricorder was not implemented for this work. 

2.2.2 Spectral Mixture Analysis (Traditional Unmixing) 

Spectral mixture analysis assumes that for a multispectral image, the spectral variation is due to a small 

number of endmembers. These endmembers all have different reflectance spectra and the differences in the 

spectra serve as "fingerprints" to identify the different materials.   In the case of areal and aggregate mixtures, it 

is possible to produce a linear mixture of these endmembers that closely matches the observed spectra measured 

by the sensor. For N endmembers, this becomes 

N 

LsensorU)   =    2Le(4>fe Eq.   18 
e = 1 

where Lsensor(X) is the spectral radiance reaching the sensor, fe is the fraction of endmember e within the pixel, 

and Le(A,) is the spectral radiance of that endmember. 

The response of the sensor should be taken into account also. Let 
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DC;   =  gi ■ ^   + bj Eq.  19 

and 

Li   =   jLsensorC^ÄC^)^ Eq.  20 
Ä 

where DQ , g; and bj are the digital count recorded by the detector, gain of the detector, and bias for the i* 

spectral band, ßj(A,) is the detector's spectral responsivity, and L; is the effective radiance "seen" by the sensor. 

Note that the measured radiance is affected by the spectral response of the sensor. Combining equations 18 and 

20, 

r N 

,-JX LeU)fJ(Z)dA e v   ' e 

X   e 

N . 

LS    =    XfeJLeC^Bja)^ 
e= 1        X 

N 

Li   =    SLe,ife'i   =   l.-k Eq. 21 
e = 1 

where Le,j is the effective radiance of endmember e measured in the i* band of the sensor, and k is the number 

of bands. 

The effects of the atmosphere can often be removed. Green et al (1993) present a method of 

calibrating AVIRIS data to eliminate atmospheric effects. When digital counts are corrected for atmospheric 

effects, spectral mixture analysis may be done in terms of the apparent reflectance of the endmembers 

DC;  = &-R,  +b; 

N 

Ri   =    ^Re,i fe Eq.  22 
e= 1 

where R^ is the effective reflectance of endmember e in the i* spectral band. 

Spectral mixture analysis produces equivalent results if calculations are performed in terms of radiance 

(equation 21) or reflectance (equation 22). The form of equation 22 will be used for the remaining discussion. 
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Spectral mixture analysis is performed using the following equation 

N 

LRXS; =  5>e, fe + £. i=l....k Eq. 23 
e = 1 

where LRXS; is the digital count in the i* spectral band, fe is the unknown fraction of endmember e in the pixel, 

Re,i is the reflectance of reference endmember e in the i* band (obtained from a library of endmembers), $ is the 

error in band i for the fit of N endmembers, and k is the number of bands in the low-resolution image. Spectral 

mixture analysis requires that the least squares fit to equation 23 be "good" (A good fit occurs when the RMS of 

the £j values is approximately the same magnitude as the sensor noise). The error is due to the residual variance, 

and is a measure of the spectral variation not predicted by the model. 

The goal is to calculate the N unknown fractions. Equation 23 is the available equation and provides a 

constraint on the number of endmembers that can be unmixed or the number of bands required in the 

multispectral image. So the number of endmembers must be k > N. Using LANDSAT TM as an example, the 

maximum number of endmembers that can be unmixed is 6 (k = 6). This is a rather small number of possible 

endmembers and explains why hyperspectral sensors are much more suited to unmixing applications than 

multispectral sensors. The multiple bands of the hyperspectral sensor (e.g. 224 bands for AVIRIS) are ideal for 

use with unmixing equations. 

Smith et al (1990) use a two-step process where the image is modeled as mixtures of image derived 

endmembers and then the image endmembers are modeled as mixtures of reference endmembers. Image 

endmembers are often a mixture of other materials and are selected such that a minimum number of reference 

spectra combine to describe them. For example, an image endmember may actually be composed of 40% 

vegetation and 60% soil because no pure pixels of vegetation or soil are present in the scene. In the second step 

of the process the fractions of this image endmember would be unmixed into fractions of reference spectra for 

soil and vegetation. Image endmembers are expressed as linear mixtures of reference endmembers in the same 

way that image data is expressed as mixtures of image endmembers. The spectra of the reference endmembers 
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are convolved with the bandpass of the sensor bands to ensure accurate comparison between the image 

endmembers and the reference endmembers. 

Smith et al (1990) use a shade endmember to account for shading and shadows. The fraction image 

basically reflects lighting and topography variations in the image. To compensate for possible anticorrelation 

between vegetation/soil fractions and the shade fractions, all fractions except shade are re-scaled to sum to unity, 

pixel by pixel. For example, a vegetation endmember may be scaled using 

f 
\Tf veg 

^   lshade-' 

where Vfs is the scaled vegetation fraction, fveg is the original vegetation fraction, and fshade is the shade fraction. 

This process removes only the shade fraction from the pixel. The scaling is correct assuming shade is equally 

present among all the endmembers. For display purposes, the complement of the shade image (l-fshade) is 

combined with the Vfs image to produce an image which matches observer intuition (e.g. high shade fractions 

appear dark). 

If two or more endmembers are closely related (e.g. different types of soils), the same procedure for 

normalizing for shade can be used to emphasize the fractions between these closely related endmembers. For 

example, given two different soil endmembers, (Sa and Sb), a scaled fraction for soil endmember Sa can be 

generated by 

fSa 

where Safs is the scaled fraction for endmember Sa. Higher values of Safs indicate an abundance of soil type a, 

and low fractions indicate more of soil type b. This process can be used with equation 22 to produce fraction 

maps that are more closely calibrated to ground measurements. 
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2.2.3 Constraint Conditions 

The previous discussion presented spectral mixture analysis as an unconstrained problem. However, 

the literature contains three different constraint conditions. The first is unconstrained, as previously presented, 

where fractions may assume whatever value is needed to produce an estimate with minimum error. The second 

condition is called partially constrained. Here, the sum of all the fractions within a pixel must be unity. 

N 

2^fe   =   * Eq. 26 
e= 1 

providing one equality constraint. Positive and negative fractions may be generated by both unconstrained and 

partially constrained unmixing. The fully constrained condition levies the additional requirement that all 

individual fractions lie between zero and one. 

N 

Efe   =   1, (0<fe <l) Eq. 27 
e = 1 

providing 2*N inequality constraints. 

Although the fully constrained situation seems to be the best method because it matches intuition, the 

negative fractions returned by the partially constrained case do have physical explanations. The following 

example may illustrate this point. Figure 9 illustrates mixtures of three materials in two spectral bands. The 

reflectance in each band is plotted along the axes. The vertices of the triangle are located at the reflectance of 

pure pixels of the three materials. Mixtures of the three materials with positive fractions are located along and 

within the perimeter of the triangle. For example, a 50/50 mixture of materials 1 and 2 materials lies midway 

between the vertices of these two materials as shown by the "X" in Figure 9. 
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" Band 2 

Bändel 

Figure 9: Three Material Mixtures in Two Spectral Bands 

1C Figure 10 illustrates the results due to random variation. Although endmembers are plotted as specifi 

points, they truly represent the mean vectors. If the real materials are gaussian distributed about the mean, then 

the contours plotted in Figure 10 represent equally likely departures from the mean values. 

"Band 2 

Bandl 
 >■ 

Figure 10: Mixture Requiring Negative Fractions 
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Suppose a particular pixel contains endmembers whose reflectance values are represented by the vertices of the 

solid triangle. The possible mixtures for this pixel lie within the solid triangle. Note that the point denoted by 

"X" lies within the solid triangle but outside the triangle formed by the reference endmembers. The mixture is a 

valid one, but requires negative fractions involving the reference endmembers. 

2.2.3.1 Spectral Mixture Analysis Summary 

Smith et al (1990) use Landsat TM data for spectral mixture analysis. The relatively small number of 

bands does not allow unique spectral identifications. Many materials, measured through the TM bandpass filters 

are indistinguishable from many mixtures of reference endmembers. Typically, there is no unique set of 

endmembers which combine to match the multispectral data. This is similar to the metamer found in color 

science. Spectral unmixing works best when applied to many bands of data as in the high spectral resolution of 

hyperspectral imagery. Spectral mixing is best applied when there is no interaction between scene elements (i.e. 

the linear mixing model applies). When non-linear mixing is present, other methods must be employed. The 

shade endmember can account for shading and topographic conditions. Since much of the variance in TM 

images is due to shading and shadows, the complement of the shade image can approximate the topography of a 

scene. 

2.3 Image Fusion Via Stepwise Unmixing and Sharpening 

Gross (1996) proposes an improved image fusion method based on stepwise regression. A low- 

resolution multispectral image is unmixed, producing low-resolution material maps. Conventional unmixing 

assumes that the number of endmembers exists throughout the entire image, attempting to find fractions for N 
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endmembers in every pixel. Gross implements a new method which adaptively estimates the endmembers 

within each pixel, and solves for the fractions for the n endmembers within the target pixel. 

2.3.1 Step wise Unmixing 

The stepwise method requires that for each pixel, a library of L endmembers be searched for the n 

endmembers that are in that pixel. These endmembers are those that minimize the error. The output is the 

fractions for the n endmembers for the target pixel. In general terms, a predictive equation of the form 

A 
y   = Ax Eq. 28 

is used, where y is the estimated spectral vector for the pixel, A is the matrix of reflectance values, and x is a 

vector containing the fractions. The main difficulty in stepwise regression is that n, the number of endmembers 

to be unmixed within a superpixel, is unknown. If n is chosen to be too large, over-fitting occurs and the 

solution tracks the noise in the data. Not only must the correct number of endmembers be used, but the most 

appropriate endmembers must be used as well. This could be done employing a search through L of all the 

possible combinations, but this method is computationally prohibitive. Such a strategy involves searching 

L! 
through ——       — combinations to obtain the optimum endmembers. As the size of the library increases, this 

nl(l — n)\ 

number grows large quickly, requiring large amounts of computer resources.   The stepwise method employed 

by Gross offers a less computationally prohibitive method. 

Consider the basic ANOVA table illustrated in Table 1. Such an ANOVA table is typically formed to 

analyze the variance in a predictive model into its component parts: one due to the relationship with the 

predictor variable(s), and one due to error. Define the model as in equation 28, and let y be an m-vector, x an n- 

vector, and A an m x n matrix. The first column in Table 1 contains the variation source. The second column 

contains the degrees of freedom for that source. The third column shows how to calculate the Sum of Squares 
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(SS). The degrees of freedom and the Sum of Squares are referred to as "corrected" because the mean of y is 

subtracted from the measurements. The fourth and fifth column show uncorrected degrees of freedom and how 

to calculate the SS in matrix notation. The Mean Square (MS), in the final column, is calculated by dividing the 

SS by the appropriate degrees of freedom. 

Source df Sum of Squares df Sum of Squares        Mean Square (MS) 
(corrected) (SS) (uncorrected) (SS) 

(Matrix Form)  

Regression 

Error 

"-1        X(y, - y)1 

(corrected) 

SSR= x'A'y MS(Regression) =>MSR 

MSR = SSR/(n-l) 

m-n            SSE = y'y - x'A'y        MS (Error) => MSE 

 MSE = SSE/(m-n) 

Total m 1       Z(y, - y)2 

 (corrected) 

m y'y (uncorrected) 

Table 1: Basic ANOVA Table 

If the regression model is a good one, and the errors are gaussian with zero mean, then the errors 

should be chi-square distributed (a2). If the regression model is poor, then the errors will not be chi-square 

distributed. A hypothesis test can be used based on the relationship that the ratio of two chi-square variables 

divided by their degrees of freedom has an F-distribution as in 

Eq. 29 

where m and n denote the degrees of freedom for the two chi-square variables. 

Now consider the SSR and SSE. If the errors are gaussian, then SSR and SSE are fl2 distributed 

SSR 

n-\ 
= MSR *n-l 

n-1 
Eq. 30 
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SSE 

m—n 

and the ratio of 

= MSE ~ 
m-n 

Eq. 31 

F = 
MSR 

MSE 
Eq. 32 

will follow an Fn.lim.n distribution. The MSR/MSE ratio is formed and compared to a tabulated F-statistic with 

n-1 and m-n degrees of freedom at the desired confidence level. If the ratio is greater than the value in the F- 

statistics table, then the regression model is a good one. If the ratio is less than the value in the table, then the 

regression model is rejected (this model would not explain enough of the variance to justify using it) and a better 

model should be used. 

Stepwise regression is based on an ANOVA calculation of the "Extra Sum of Squares" (Draper & 

Smith, 1981). In this method an n-term model is compared with an (n-l)-term model to determine the 

significance (benefit) of adding the additional term. Define the reduced-order term as 

y = Wz    ; z = (W'Wy'W'y Eq. 33 

where z is an (n-l)-vector and W is an m x (n-1) matrix. The SS and MS are calculated as shown in Table 2. 

Source 

Regression 

Reduced Model 

Extra Term 

Error 

Total 

df (uncorrected) SS 

n-1 

1 

m-n 

m 

x'A'y-z'W'y 

z'W'y 

y'y - x'A'y 

y'y (uncorrected) 

Table 2: Extra Sum Of Squares ANOVA Table 

MS 

MSe 

MSE 
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As with the previous ANOVA table, the sum of squares are tf distributed. The ratio of 

MSextrajem/MSE is compared to the value in a F-statistic table with the appropriate degrees of freedom, at the 

desired confidence level. If the ratio is greater than the tabulated value, then the regression model is valid, and 

the more complex model is required. If the ratio is smaller, then the simpler model is retained. In practice, a F- 

statistics table is not used, and a fixed value of F-to-enter and F-to-remove is used regardless of the degrees of 

freedom in a particular model being examined. 

2.3.1.1 Stepwise Unmixing Summary 

Stepwise selection ensures that the finally selected subset contains the proper number and most 

appropriate endmembers from the reference library. This method can map a greater number of endmembers 

than traditional methods, and can also prevent extraneous fractions from being over-fit to the image noise. 

2.3.2 Constraints 

After the appropriate endmembers are selected, unmixing may be performed unconstrained (as 

previously described), or with constraints. If constrained unmixing is desired, the final answer is obtained 

through a restricted least squares, involving linear equality and inequality constraints. 

2.3.2.1 Equality Constraints 

Once the number of endmembers to be examined is selected, then the remaining constraints must be 

applied to solve the predictive equation 28. The solution is the one that minimizes the error 

6   =  (y-y)2 Eq. 34 
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subject to equality constraints, which reduce the number of free variables in the solution space. This least 

squares problem can be solved using linear algebra. 

A linear algebra solution to the constrained least square problem is presented by Lawson & Hanson 

(1974): 

Given an m1xn matrix C of rank p, an m rvector d, an m2 x n matrix A, andan 

m2-vector y, minimize I \y-Ax\ I subject to Cx - d. 

The solution exists if and only if the constraint condition (Cx = d) is consistent. If consistency is assumed, then 

n > p = rank(C). The solution to the least square equality (LSE) problem is performed in three stages: 

1. A lower-dimensional unconstrained least square problem is derived from the original constrained 

problem. 

2. The derived problem is solved. 

3. The solution is transformed to the original coordinate system to obtain the solution of the original 

constrained problem. 

See Appendix A for details on solving the LSE problem. 

2.3.2.2 Inequality Constraints 

Lawson & Hanson (1974) also present a solution to the linear least square problem with linear 

inequality constraints: 

Given anmxn matrix G, an m-vector h,anm2xn matrix A, and an m2-vector 

y, minimize Wy-AxW subject to Gx>h.. 

While equality constraints reduce the number of free variables in the least square problem, inequality constraints 

establish boundaries within the solution space. An iterative solution is required to identify active constraints and 

restrict those affected variables. On each iteration, the active constraints are treated as equality constraints and a 

minimum is derived as previously described for equality constraints. See Appendix B for details on solving the 

LSI problem. 
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2.3.3 Sharpening 

Gross (1996) proposes a method where fractions contained within low-resolution fraction maps are 

spatially located to the resolution of a higher resolution image, through a process called sharpening. See Figure 

11 for an illustration of sharpening. 

Low Res Pixel 

h*2>h 

SUPERPIXEL 

f    f    f    High Res Superpixel 
1l,l'12,l'13.1  __~ r    r 

M,6'f2,6'f3,( 

S = 9 SUBPIXELS 

Figure 11: Illustration of Sharpening 

The sharpening model has the same form as spectral mixture analysis. 

HRPj   =    IXa„,e fe,j    +  S 
j = l 

j = l....s Eq. 35 

where HRPj is the digital count in the i* spectral band for the j* subpixel of the high-resolution pan image, Rpan,e 

is the reflectance of reference endmember e in the sharpening pan band(s), and feJ is the high-resolution fraction 

of endmember e in subpixel j. This is a least squares problem, and is feJ is selected to minimize the error. 
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There is also a consistency requirement that the average of the high-resolution fractions for each endmember 

equal the original low-resolution fraction as 

1     s 

~ 2A,J 
= fe e=l....n Eq. 36 

s j = i 

where fe is the original low-resolution fraction. 

Sharpening may also be performed unconstrained (as previously discussed) or with constraints. 

Partially constrained sharpening provides s equality constraints 

n 

Xfe.j j = l....s Eq. 37 
e= 1 

However, only (s-1) are independent. Fully constrained sharpening provides 2*n*s constraints 

n 

Xfe,j  =0,   (O <fej  < l) j = i....s Eq. 38 

e = 1 

The equality constraints are not all independent. There are more unknowns than equations, so the sharpening 

model is solved as an under-determined least squares problem. The orthogonal decomposition method can be 

used to provide a solution. The fully constrained sharpening problem requires an iterative solution, and an 

optimization algorithm applies only the active constraints, as previously described for solving fully constrained 

unmixing problems. 

Sharpening may be solved with Lagrange multipliers. Using Lagrange multipliers, the function 

A 

F(x)  =  (y-y)   is to be minimized subject to s equality constraints, 

hj(x) = Cj, (i = l.-.s) Eq. 39 

An augmented function, called the Lagrangian, can be formed having the same minimum as F(x) 

L(x) = F(x) + X (H(x)-C) Eq   40 

where X is a vector of Lagrange multipliers and the quantity (H(x)-C) must be zero at the minimum. The 

minimum of L will also be the minimum of F. The requirements to minimize L are listed in Table 3. 
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d d d 
— L =  — F(x) + Pi    — H(x) = 0 
dx dx dx 

—L = H(x)-C = 0 

Table 3: Necessary Conditions to Minimize L 

For the previously defined least squares problem, the function to be minimized is 

Eq. 41 

Eq. 42 

F(x) = (y-y)2  = (y-Rx)2 

subject to constraints, 

H(x) = Hx-C 

where H is a s x n matrix, c is a p-element vector, and x is an n-element vector. 

Recalling equation 40, then 

Eq. 43 

Eq. 44 

and 

— L =  -2R'(y-Rx) + H'A = 0 
dx 

—L = Hx-C = 0 
OA 

In matrix form, this becomes 

2R'R    H' 

H       0 

2R'y 

C 

The first matrix in equation 47 can be inverted to solve for x and X, producing 

(R'R) 1 - WH(R'fl)"1 
W 

[H(R'R)-
1
 H'Y H{R'R)~

X
    -[H(R'R)-

1
 H']~ 

R'y 

C 

where W = (RTR)-IHT[H(RTR)1HT]1, and the multiplier now accounts for the factor of 2. Then 

Eq. 45 

Eq. 46 

Eq. 47 

Eq. 48 
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x = xu + W(y-Hxu) Eg. 49 

where xu = (R'R)'   R'y is the estimator of high-resolution fractions. 

2.3.3.1 Sharpening Summary 

Sharpening takes the low-resolution fraction maps and enhances them, wherever possible, by spatially 

locating th materials to the same resolution as the sharpening band(s). It offers a way of improving the quality 

of the low-resolution fraction maps. 
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3.  APPROACH 

The available literature indicates that most image fusion algorithm techniques have only been evaluated 

in isolation, and that different routines have seldom been compared with each other. This research compared the 

results of the sharpen (fuse)Ainmix procedure with those produced by the unmix/sharpen process. The unmix 

algorithms evaluated were the adaptive stepwise least squares method and the traditional least squares method. 

3.1 Use of Synthetic Imagery (SIG) 

Comparison of the two image fusion processes can be a difficult task. Therefore, it is useful to perform 

the procedures on a set of images whose radiometric, geometric, and spatial properties are known and can be 

controlled. Synthetic Image Generation (SIG) is ideal for such an application. The Digital Image Processing 

and Remote Sensing Synthetic Image Generation (DIRSIG) model used at RIT is such an image generation 

system. DIRSIG is a ray tracing algorithm which calculates radiometric signatures using a first principles 

approach. It can model such processes as upwelled and downwelled radiance, shadowing, and various 

interactions between scene elements and the environment (earth and sky) over the range from 0.28 to 20.0 urn. 

The user can construct scenes of varying complexity and also specify the sensor characteristics and responsivity. 

The output of the model is a scene which, in most cases, closely simulates the image (including spectral and 

spatial characteristics) that would be produced by a specific sensor under conditions provided by the user. 

The previously mentioned image fusion processes were tested on imagery generated by DIRSIG. The 

complexity of the scenes was controlled by the user, increasing incrementally from simple, low spatial frequency 

images to complex high frequency ones used to test the final algorithms. Use of SIG allowed direct comparison 

of algorithm output to truth data. Varying the content of the scenes also provided an indication of the robustness 

of the algorithms and the optimum circumstances for applying them. 
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3.2 Test Method Overview 

The algorithms were initially tested using SIG data. Low spatial frequency and high spatial frequency 

scenes were used to obtain optimum parameters for the algorithms. The resulting algorithms were validated by 

performing image fusion on real data. This final validation also ensured that there were no artifacts introduced 

from the parameter optimizations obtained through the SIG processing. One DIRSIG image was a forest scene, 

containing several camouflaged military vehicles. The other DIRSIG scene was an urban scene depicting 

downtown Rochester, NY. Two real scenes were obtained from the Western Rainbow data collection and are 

images of desert area containing military vehicles. 

All original multispectral scenes were degraded by factors of 24X, 12X, and 6X. The derived 

panchromatic images were degraded by factors of 12X, 6X, 4X, and 3X. This resulted in images to be enhanced 

from 24X to 3X (a scale factor of 8X), from 24X to 4X (a scale factor of 6X), from 12X to 3X and 24X to 6X (a 

scale factor of 4X), and from 12X to 3X and 6X to 3X (a scale factor of 2X). 

The process performed on each image is outlined in Figure 12. All fusion via the DIRS method used 

the global regression method, based on recommendations provided by Braun (1992). The fusion was performed 

at scale factors between the low-resolution and high-resolution imagery of 2X, 4X, 6X, and 8X. The resulting 

high-resolution image cubes were then unmixed via the stepwise method. 

The low-resolution image cubes were unmixed using the stepwise and traditional methods. The low- 

resolution fraction maps were then sharpened using the high-resolution panchromatic data at sharpening scale 

factors of 2X, 4X, 6X, and 8X. The sharpened, unmixed material maps were compared to the unmixed, fused 

maps. 

All unmixing was performed fully constrained, based on recommendations by Gross (1996). Fully 

constrained unmixing produces the least squared error (compared to unconstrained and partially constrained 

unmixing). All sharpening was performed using partial constraints. Gross states that fully constrained 

sharpening produces lower error, but the computational tradeoff outweighs the improved results. 

40 



All computer routines were written in the RSI's (Research Systems Incorporated) Interactive Data 

Language (IDL®) which is well suited for image processing routines. 

Degrade Hyperspectral Image 
by24X, 12X, 6X& 
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12X,6X,4X, 3X 
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Figure 12: Test Plan Overview 
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3.3 Selection of Test Images 

The first stage in performing validation was selection of final test scenes. Two DIRSIG scenes were 

used and two real scenes were used. The DIRSIG scenes were generated with bands which simulate the 

Environmental Research Institute of Michigan (ERIM) M-7 airborne line scanner(MUG, 1995). The fifteen 

bands of the M-7 sensor cover the visible (VIS), near infrared (NIR), and short wave infrared (SWIR) regions of 

the spectrum. The M-7 Sensor has "configurable" bands, and two different band configurations were simulated. 

The band passes for the various spectral bands are detailed in Table 4 and Table 5 

Band Number Low Hiah 
1 0.44 0.5 
2 0.46 0.53 
3 0.495 0.57 
4 0.46 0.62 
5 0.58 0.675 
6 0.615 0.72 
7 0.66 0.765 
8 0.705 0.93 
9 0.76 1.045 
10 0.9 1.385 
11 1.1 1.39 
12 1.3 1.79 
13 1.4 1.89 
14 1.9 2.39 
15 1.9 2.49 

Table 4: M-7 (Forest) Spectral Bands (u.m) 

The forest DIRSIG scene used was based on 15 band imagery contained in the Southern Rainbow data 

collection. Table 4 shows the bandpass data used for the forest scene. The spatial resolution of this image was 

approximately one meter, and contained 672 rows and 672 columns. A color version (using bands in the visible 

region) of this test scene is shown in Figure 13. The image contains deciduous trees, grass, several dirt roads, a 

small lake, and several small tanks and trucks, consisting of camouflage paints, canvas, and painted steel. 
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The other DIRSIG image used was an urban scene, depicting downtown Rochester, NY. This scene 

was originally used by White (White 1996) but the DIRSIG simulation was re-run to simulate the M-7 band 

passes. Table 5 shows the bandpass data used for the Rochester Scene. The spatial resolution of this image was 

approximately one meter, and contained 552 rows and 744 columns. A color version (using bands in the visible 

region) of this test scene is shown in Figure 14. The image contains deciduous trees, a river running along the 

bottom of a gorge, grass and loam, grass, and buildings and roads constructed with several types of brick, wood, 

shingles, concrete, and asphalt. 
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Figure 13:  Forest Test Scene (Color Image) 

44 



Band Number Low Hiah 
1 0.45 0.47 
2 0.48 0.5 
3 0.51 0.55 
4 0.55 0.6 
5 0.6 0.64 
6 0.63 0.68 
7 0.68 0.75 
8 0.73 0.81 
9 0.81 0.92 
10 1.02 1.11 
11 1.21 1.3 
12 1.53 1.64 
13 1.54 1.75 
14 2.08 2.2 
15 2.08 2.37 

Table 5: M-7 (Rochester) Spectral Bands (|J.m) 
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Figure 14: Rochester DIRSIG Scene (Color Image) 

Two real scenes were used to evaluate the performance of the methods on actual data. Both were 

images from the Western Rainbow data collection. One image was obtained by the DEADALUS hyperspectral 

sensor.  DAEDALUS is a 12-band sensor with band passes covering the VIS, NIR, SWIR, and thermal regions 

as shown in Table 6.  The last two bands were not used for this work, so the scene used contained 10 bands. 

The image was acquired at an altitude of 250 ft and has a spatial resolution of approximately 1 meter. The final 

scene chosen contained 936 columns and 696 rows. Band 4 of this test scene is shown in Figure 15.  The 

image contains desert pavement, silty soil, sparse vegetation, tanks, armored personnel carriers, and a mobile 

SCUD launcher. 
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Figure 15:  Band 4 (570 - 650 nm) of DAEDALUS Image 
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Band Nurr iber Low High 

1 0.405        ! 0.455 
2 0.435 0.535 
3 0.5 0.625 
4 0.57 0.65 
5 0.595 0.72 
6 0.645 0.79 
7 0.7 0.955 
8 0.785 1.07 
9 1.495 1.835 
10 2.011 2.56 

11 (Not Us Bed) 2.525 5.575 
12 (Not Used) 7.6 14 

Table 6:   DAEDALUS Spectral Bands (|im) 

Figure 16:  Band 15 (749 - 760 nm) ofHYDICE Image 
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The second real scene used was obtained by the Hyperspectral Digital Imagery Collection Experiment 

(HYDICE) sensor. HYDICE is a hyperspectral sensor with 210 bands from 390 nm to 2500 nm. To reduce 

computational complexity, bands within atmospheric absorption regions were removed, and approximately 

every fourth band of those remaining was used for the final scene. The bandpasses of the resulting image are 

shown in Table 7. The test scene had a spatial resolution of approximately 1 meter, and contained 400 rows, 

304 columns, and 44 bands. The test scene, shown in Figure 16, contains desert pavement, road, silty soil, 

sparse vegetation, test panels, and tanks, cars, and armored personnel carriers. 

Band Number Low High Band Number Low High 
1 408.34 411.72 23 1191.50 1206.36 
2 422.00 425.54 24 1250.76 1265.44 
3 436.35 440.09 25 1309.23 1323.67 
4 451.55 455.55 26 1436.86 1450.63 
5 467.82 472.12 27 1491.58 1505.00 
6 485.36 490.02 28 1531.75 1544.94 
7 504.42 509.51 29 1584.16 1597.02 
8 525.26 530.85 30 1635.28 1647.82 
9 548.19 554.37 31 1685.12 1697.35 
10 573.55 580.40 32 1733.73 1745.67 
11 601.70 609.32 33 1792.85 1804.43 
12 633.02 641.49 34 1970.70 1981.26 
13 667.84 677.25 35 2043.64 2053.81 
14 706.46 716.85 36 2084.11 2094.08 
15 749.02 760.39 37 2123.79 2133.56 
16 795.49 807.81 38 2162.65 2172.25 
17 845.64 858.79 39 2200.80 2210.20 
18 899.01 912.87 40 2238.22 2247.45 
19 955.02 969.40 41 2284.04 2293.06 
20 1012.94 1027.68 42 2319.95 2328.83 
21 1072.10 1087.00 43 2363.99 2372.67 
22 1131.80 1146.74 44 2398.56 2407.08 

Table 7: HYDICE Spectral Bands (nm) 
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3.4 Creation of Panchromatic Data Sets 

Rather than using DIRSIG to generate a new panchromatic band for the synthetic scenes, Several bands 

were used to generate high-resolution panchromatic images. Bands of the forest scene were combined using the 

following equation 

f 0.07* band 2+0.095* band 5+ 1 

[0.105* band 7+ 0.975* band 9+ 0.49 * band 12 J 
PAN= '- Eq. 50 

1.685 

to produce a panchromatic band. The coefficients are obtained by using the bandpass of each band (the 

coefficient in the denominator is the sum of all the coefficients in the numerator). 

A different band combination was used for the Rochester scene. The following equation 

Jo.02 * (band 1 + band 2) + 0.04 * (band 3 + band 5) +1 

1 0.05* band 4+0.07* band 7 J 
PAN= -L Eq. 51 

0.24 4 

to produce a visible panchromatic band from 450 nm to 750 nm. 

A panchromatic sensor was not included in the Western Rainbow data set. Various bands of the 

hyperspectral images were used to generate panchromatic bands. For the DAEDALUS scene, bands 1,3, and 5 

were used. The following equation 

D4HD     .       0.05 * band 1 + 0.125 * band 3 + 0.125 * band5 
PAN Band =  pn   5? 

0.30 q- 

was used to produce a visible panchromatic band from 405 to 720 nm. 

A three-band sharpening image was created for the HYDICE image. The following equations were 

used 
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PAN1 = 

I      3.38*bandl+ 4.0*band4+ 5.09*band7+ 6.18*band9+     j 

[7.62*bandll+ 8.47*bandl2+ 10.39*band 14+ 11.37*bandl5 

55.50 

13.8*bandl8 + 14.74*band20 + 

[14.94* band 22 + 14.68* band 24 + 14.44* band 25 
PAN2 = ™  *■ 53 

PAN3 = 

) 10.17* band 35 + 9.77* band 37 +        | 

[9.4* band 39+ 9.02* band 41+ 8.88* band 421 

47.24 

to produce a VIS panchromatic image from 408 nm to 760 nm, a NIR panchromatic image from 899 nm to 1324 

nm, and a SWIR panchromatic image from 2043 nm to 2320 nm. 

Typically, image fusion requires that the panchromatic image be registered to the multispectral image. 

This process involves selection of ground control points in both images, the application of some polynomial fit, 

and re-sampling via a routine such as nearest neighbor, or bilinear interpolation.   Since the panchromatic bands 

used in this research were derived from the original multispectral images, the LRXS and HRP images were 

perfectly registered, and geometric registration was not required 

3.5 Generating Fraction Maps 

Since the true elements in the DIRSIG scenes were known, true fraction maps were created. These 

perfectly unmixed material maps were compared to the results of the unmix and sharpen algorithms. Samples 

showing material maps from the forest scene for grass, dirt, and deciduous trees (degraded to 3X) are shown in 

Figure 17. Sample fraction maps of the Rochester scene for grass, water, roof gravel, loam, trees, new and old 

asphalt, concrete, glass, and shingles are shown in Figure 18. Recall that the digital count in the material map is 

proportional to the fraction ofthat material for each pixel location. 
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Figure 17:  Perfectly Unmixed Material Maps for Grass, Dirt, & Deciduous 

Trees (Forest Scene) 

Figure 18:  Perfectly Unmixed Material Maps for Grass, Water, Roof Gravel, Uoam, Trees, 

New Asphalt, Old Asphalt, Concrete, Glass, and Shingles (Rochester Scene) 

3.6 Endmember Selection 

Two options are available for selecting spectral libraries. Reference spectra from a library of 

endmembers, or scene-derived endmembers may be used. The reference spectra are often recorded in laboratory 

conditions, or in the field.  In either situation, the measured radiance does not travel through several thousand 

feet of atmosphere, so the spectra are much sharper for these reference spectra than those measured by the 



sensor. In order for the reference spectra to be employed, the effects of the atmosphere must be removed from 

the image as described by Green (1993). To avoid this step, scene-derived endmembers were used. 

To obtain these endmembers, "pure" pixels were located within the images. A Maximum Noise 

Fraction (MNF) transform was first performed to reduce the dimensionality of the images. The resulting MNF 

images served as the input for the Pixel Purity Index (PPI). The result of the Pixel Purity Index was a map of 

pure pixels which were likely candidates for mixture endmembers. The details of the MNF transform and Pixel 

Purity Index are described below. 

3.6.1 Maximum Noise Fraction (MNF) Transform 

The Maximum Noise Fraction Transform, described by Green (Green et al 1988) can determine the 

inherent dimensionality of data and segregate noise in the data. The MNF transform is designed to be an 

improved alternative to the Principal Component Transform. 

The Principal Component Transform uses a linear transformation to translate and rotate data into a new 

coordinate system that maximizes the variance. This transformation is useful for enhancing information content, 

compressing useful image information into the low-order Principal Components. This compression is evidenced 

by a steady decrease in signal-to-noise ratio as the Principal Component number increases. However, this trend 

does not appear in all data sets, and sometimes a higher Principal Component can contain more useful data than 

some preceding (lower) ones. 

The MNF Transform is designed to prevent such an occurrence. It is basically two cascaded Principal 

Component Transforms. The first transformation is based on an estimate of the noise covariance matrix and de- 

correlates the noise in the data. This step exploits the fact that the signal in a pixel is strongly correlated with 

the signal of neighboring pixels, while the noise shows weak spatial correlation. The result of this step is a 

noise-whitened data set, in which the noise has unit variance and no band to band correlations. The second step 

is a Principal Components Transformation of the noise-whitened data. The full data space can then be divided 
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into two parts: coherent, spatially meaningful images (with large eigenvalues), and noise-dominated images 

(with near unity eigenvalues). 

The coherent images serve as a data set essentially free of noise which can be used for further 

processing with reduced computational complexity. The MNF Transform was implemented by the ENVI® 

image processing software by Research Systems Incorporated (RSI). The coherent bands of the MNF image 

served as input for the Pixel Purity Index. 

3.6.2 Pixel Purity Index 

The Pixel Purity Index (PPI) is a method to find spectrally pure pixels in multispectral and 

hyperspectral images. This is done with the assumption that spectrally pure pixels are likely to correspond to 

mixing endmembers. The Pixel Purity Index is computed by randomly generating a unit vector and projecting 

the n-dimensional scatterplots of image data onto the unit vector. Next, the pixels that project at the extremes 

are identified, and a record is kept of the total number of times each pixel is marked as extreme. See Figure 19 

for an example in two dimensions. The resulting image is a brightness map which records how often a pixel was 

defined to be extreme. Thresholding can be performed on the PPI image to identify pixels or clusters that are 

candidate endmembers. 

Figure 19: Locating Extrema in the Pixel Purity Index 
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The Pixel Purity Index can be implemented on Maximum Noise Fraction (MNF) transformed images to 

reduce the amount of data and to minimize the variation in extremes due to noise. This is suitable since the PPI 

image is only a map of pixel locations of candidate endmembers. 

The PPI data can plotted, and clusters of pixels indicate candidate endmembers. This normally 

requires interactive selection and the use of multiple projections of the n-dimensional data onto 2-D plots to 

define endmembers. See Figure 20 for a 2-D example. 
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and 3 
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Projection onto Axis 1 

3 

Figure 20: Obtaining Endmembers from PPI Clusters 

Once the endmembers are defined in these projections, the corresponding pixels can be used to define 

the endmember vectors from the means of the selected pixels in each cluster in either reflectance or radiance 

space. 

The process of obtaining the scene-derived endmembers was rather labor intensive. The "pure" pixels 

indicated by the PPI image did not always produce acceptable results. The spectrum of a material was obtained 

by using the PPI image as a mask within a region of interest and obtaining the average of the highlighted pixels 

in the multispectral images. A trial unmixing was then performed. If the resulting fraction maps were visually 

acceptable, then the spectrum was retained in the library. This was easily done with the DIRSIG scenes because 
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class maps could be used to provide quantitative data to gauge performance. The real scenes used for this 

research did not contain much clutter and the success of the unmixing for the candidate spectrum could be 

determined simply by looking at the higher resolution original image. This would have been a more difficult 

process if the military vehicles had been camouflaged. Certain band combinations were especially useful in 

highlighting materials (e.g. vegetation) in the original image for comparison with the class maps. If the PPI 

pixels produced bad results, nearby pixels were used instead to obtain the library. 

The spectra used to unmix the images are presented in both tabular and graphical form. Please see 

Tables 8 through 11 and figures 21 through 24. 

Band Shadow Camo 
Paint 

Water Grass Rubber Dirt Tree 
Bark 

Glass Trees Steel 
Side 

Steel 
Bumper 

Canvas 

1 0.2840 0.2996 0.3098 0.3093 0.2675 0.2573 0.2725 0.4157 0.2843 0.3358 0.2492 0.2686 
2 0.2824 0.3030 0.3100 0.3135 0.2663 0.2586 0.2750 0.4275 0.2892 0.3308 0.2462 0.2682 
3 0.2933 0.3184 0.3158 0.3290 0.2690 0.2753 0.2949 0.4471 0.3220 0.3298 0.2517 0.2728 
4 0.2872 0.3236 0.3128 0.3390 0.2666 0.2763 0.3051 0.4588 0.3157 0.3233 0.2486 0.2711 
5 0.2807 0.3259 0.3107 0.3515 0.2677 0.2752 0.3105 0.4706 0.2973 0.3229 0.2513 0.2736 
6 0.2785 0.3270 0.3052 0.3546 0.2697 0.2720 0.3147 0.4784 0.2909 0.3224 0.2538 0.2760 
7 0.3134 0.3372 0.2853 0.3887 0.2631 0.3500 0.3924 0.4745 0.3717 0.3218 0.2568 0.2688 
8 0.4118 0.3863 0.3098 0.4911 0.2980 0.5024 0.5093 0.5216 0.5087 0.3683 0.3028 0.3052 
9 0.3877 0.3518 0.2706 0.4723 0.2689 0.5020 0.5061 0.4863 0.4817 0.3419 0.2783 0.2775 
10 0.3989 0.3459 0.2625 0.5183 0.2732 0.5557 0.5434 0.5020 0.4856 0.3556 0.2886 0.2850 
11 0.3812 0.3310 0.2510 0.5164 0.2647 0.5321 0.5191 0.5059 0.4610 0.3620 0.2793 0.2787 
12 0.3373 0.3295 0.2628 0.4795 0.2784 0.3826 0.4059 0.5255 0.3945 0.3904 0.2750 0.2912 
13 0.3273 0.3190 0.2549 0.4652 0.2700 0.3826 0.3944 0.5059 0.3816 0.3816 0.2681 0.2823 
14 0.2572 0.2855 0.2382 0.3956 0.2511 0.2691 0.2887 0.4824 0.2838 0.3788 0.2397 0.2648 
15 0.2766 0.3020 0.2601 0.3957 0.2726 0.2899 0.3015 0.4745 0.2964 0.3892 0.2632 0.2835 

Table 8: Forest Spectral Library 
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Figure 21: Forest Spectral Curves 

Band Grass   Water 
Roof 
Gravel Loam    Trees 

New 
Asph 

Old 
Asph Concr   Glass    Shingle   Brick 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.0593 

0.0587 

0.0692 

0.0831 

0.0624 

0.0500 

0.0870 

0.3027 

0.6153 

0.6230 

0.5448 

0.3463 

0.3674 

0.1774 

0.1783 

0.0015 

0.0088 

0.0081 

0.0021 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.2273 
0.2116 

0.2002 

0.1968 

0.2069 

0.2024 

0.2176 

0.2689 

0.3606 

0.4056 

0.3885 

0.3577 

0.3587 

0.0037 

0.0852 

0.0887 

0.0903 

0.1043 

0.1163 

0.1325 

0.1434 

0.1703 

0.2418 

0.4273 

0.5501 

0.5841 

0.6213 

0.6213 

0.6252 

0.6157 

Wood 
(Blue) 

Wood 
(Red) 

Wood Wood 
(Gray) 

0.0912 

0.0915 

0.1704 

0.1723 

0.1149 

0.0780 

0.2033 

0.4257 

0.6589 

0.6254 

0.5212 

0.3506 

0.3570 
0.1831 

0.1612 

0.1013 

0.0985 

0.0981 

0.0952 

0.0956 

0.0945 

0.0996 

0.1322 

0.2074 

0.2123 

0.2018 

0.2111 

0.2125 

0.2271 

0.2244 

0.3399 

0.3178 

0.2984 

0.2691 

0.2620 

0.2567 

0.1525 

0.0544 

0.0839 

0.0874 

0.0863 

0.0945 

0.0947 

0.1038 

0.0994 

0.4619 

0.4313 

0.4070 
0.3643 

0.3467 

0.3353 
0.3276 

0.3381 

0.4458 

0.4020 

0.3553 

0.3324 

0.3311 

0.3085 

0.3034 

0.0540 
0.0544 

0.0557 

0.0530 

0.0504 
0.0490 

0.0538 

0.0794 

0.1247 

0.1252 

0.1591 

0.1435 

0.1450 

0.1310 

0.1287 

0.7305 

0.6135 

0.5362 

0.4754 

0.4568 

0.4441 

0.2284 

0.0029 

0.0052 

0.0036 

0.0025 

0.0023 

0.0023 

0.0048 

0.0022 

0.0543 

0.0535 

0.0558 
0.0653 

0.0880 

0.0917 
0.1076 

0.1578 

0.2441 

0.2961 

0.3036 

0.2805 

0.2819 

0.2608 

0.2601 

0.2962 
0.2846 

0.2812 
0.2561 

0.2428 

0.2359 

0.2303 

0.2348 

0.1981 

0.0179 

0.0159 

0.0139 

0.0140 

0.0140 

0.0127 

0.1169 
0.1477 

0.2485 

0.2559 

0.2616 

0.2597 

0.2585 

0.2641 

0.2181 

0.0130 

0.0114 

0.0094 

0.0095 

0.0099 

0.0083 

0.0908 

0.1433 

0.2756 

0.1984 

0.1039 

0.0856 

0.0967 

0.1132 

0.1081 

0.0175 

0.0158 

0.0133 

0.0134 

0.0128 

0.0122 

0.5389 

0.5362 

0.5427 

0.5152 

0.5052 

0.4940 

0.4787 

0.4854 

0.4310 

0.0337 

0.0308 

0.0286 

0.0286 

0.0323 

0.0286 

Table 9: Rochester Spectral Library 
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Figure 22: Rochester Spectral Curves 

Disturbed Desert 
Band Desert Pavement Pavement Road Silrv Sand Vegetation Steel Shadow Canvas 

1 0.1364 0.1967 0.2289 0.2620 0.1249 0.2226 0.0765 0.3110 
2 0.1227 0.1908 0.2302 0.2426 0.0969 0.2244 0.0461 0.2736 
3 0.2032 0.3596 0.4094 0.4409 0.1899 0.3917 0.0544 0.4030 
4 0.2561 0.4603 0.4895 0.5457 0.2162 0.4312 0.0757 0.4274 
5 0.2003 0.3711 0.3840 0.4366 0.1580 0.3268 0.0461 0.3250 
6 0.1612 0.2963 0.2980 0.3452 0.2476 0.2436 0.0360 0.2515 
7 0.1475 0.2636 0.2585 0.3090 0.3176 0.2023 0.0338 0.2306 
8 0.1743 0.2942 0.2789 0.3641 0.3429 0.2183 0.0560 0.2706 
9 0.1753 0.2505 0.2501 0.2887 0.1731 0.1496 0.0523 0.1992 
10 0.1249 0.2085 0.1845 0.3354 0.0902 0.1172 0.0505 0.2056 

Table 10: DAEDALUS Spectral Library (\im) 
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Figure 23: DADEALUS Spectral Curves 
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Desert Disturbed 
Band Pavement Pavement Road Silty Sand Vegetation Painted Steel Shadow Canvas 

1 0.1025 0.1235 0.1683 0.2067 0.0456 0.6993 0.0573 0.5137 
2 0.1021 0.1262 0.1694 0.2024 0.0500 0.7242 0.0521 0.4804 
3 0.0989 0.1249 0.1671 0.2011 0.0529 0.6915 0.0456 0.4431 
4 0.1059 0.1377 0.1821 0.2143 0.0623 0.6980 0.0483 0.4412 
5 0.1043 0.1387 0.1803 0.2163 0.0623 0.6850 0.0445 0.4373 
6 0.1083 0.1457 0.1844 0.2242 0.0652 0.6778 0.0452 0.4392 
7 0.1072 0.1461 0.1839 0.2277 0.0740 0.6562 0.0420 0.4353 
8 0.1135 0.1574 0.2003 0.2529 0.1157 0.6915 0.0420 0.4627 
9 0.1179 0.1694 0.2109 0.2767 0.1304 0.6771 0.0431 0.4549 
10 0.1349 0.1970 0.2346 0.3208 0.1064 0.6758 0.0480 0.4804 
11 0.1532 0.2284 0.2640 0.3792 0.0951 0.7150 0.0474 0.5078 
12 0.1611 0.2423 0.2724 0.3968 0.0843 0.7078 0.0522 0.5118 
13 0.1626 0.2474 0.2702 0.4018 0.0623 0.6922 0.0500 0.5078 
14 0.1736 0.2711 0.2887 0.4313 0.2716 0.7320 0.0552 0.5451 
15 0.1776 0.2847 0.2966 0.4427 0.7574 0.7183 0.0649 0.6020 
16 0.1850 0.2903 0.3027 0.4654 0.8221 0.7183 0.0668 0.6255 
17 0.1847 0.2924 0.2984 0.4624 0.8343 0.7013 0.0673 0.6294 
18 0.1833 0.2867 0.2884 0.4453 0.8015 0.6902 0.0659 0.6059 
19 0.1840 0.2764 0.2783 0.4193 0.6549 0.6405 0.0610 0.5529 
20 0.1775 0.2796 0.2806 0.4360 0.6779 0.6327 0.0621 0.5784 
21 0.2040 0.3201 0.3180 0.4936 0.8245 0.6242 0.0731 0.6569 
22 0.2027 0.3020 0.3004 0.4288 0.5951 0.5922 0.0676 0.5569 
23 0.1819 0.2770 0.2776 0.4177 0.4525 0.5608 0.0588 0.5451 
24 0.1818 0.2796 0.2813 0.4155 0.4828 0.5477 0.0588 0.5471 
25 0.1851 0.2846 0.2872 0.4064 0.4181 0.5294 0.0604 0.5392 
26 0.2437 0.3228 0.3283 0.4262 0.1216 0.4882 0.0811 0.5804 
27 0.2009 0.2860 0.3071 0.4248 0.1127 0.4686 0.0450 0.5529 
28 0.2009 0.2993 0.3246 0.4345 0.1412 0.4732 0.0463 0.5686 
29 0.2016 0.2999 0.3251 0.4353 0.1809 0.4601 0.0485 0.5686 
30 0.2078 0.3067 0.3312 0.4416 0.2108 0.4510 0.0510 0.5451 
31 0.2210 0.3213 0.3478 0.4624 0.2167 0.4320 0.0535 0.5549 
32 0.2211 0.3177 0.3423 0.4419 0.1941 0.4137 0.0521 0.5471 
33 0.2627 0.3863 0.4024 0.4791 0.1966 0.4333 0.0930 0.6627 
34 0.2721 0.3524 0.3595 0.4235 0.0598 0.3830 0.0728 0.6216 
35 0.2752 0.3683 0.3928 0.4598 0.0716 0.3752 0.0722 0.6373 
36 0.2724 0.3622 0.3879 0.4537 0.0789 0.3575 0.0651 0.5980 
37 0.2772 0.3693 0.3930 0.4646 0.0951 0.3510 0.0659 0.5431 
38 0.2791 0.3714 0.3905 0.4605 0.1064 0.3471 0.0676 0.5922 
39 0.2755 0.3659 0.3599 0.4472 0.1206 0.3464 0.0767 0.6314 
40 0.3098 0.4067 0.4093 0.4942 0.1328 0.3425 0.0921 0.5529 
41 0.3637 0.4679 0.4836 0.5702 0.1358 0.3340 0.1111 0.6569 
42 0.3402 0.4307 0.4328 0.5241 0.1265 0.3248 0.1103 0.5863 
43 0.3505 0.4368 0.4250 0.5263 0.1436 0.3412 0.1376 0.6235 
44 0.3589 0.4377 0.4250 0.5200 0.1495 0.3438 0.1526 0.6373 
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Table 11: HYDICE Spectral Bands (nm) 
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Figure 24: HYDICE Spectral Curves 

3.7 Obtaining Sharpening Library 

Sharpening required a reflectance library of the materials in the high-resolution panchromatic images. 

The sharpening library was obtained with the same equations used to generate the pan bands. For example, the 

pan library for the forest scene was generated using the reflectance value of each material (from the multispectral 

library) in bands 2, 5, 7, 9, and 12 as in equation 50. The sharpening libraries are shown in Tables 12 through 

15. 
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Shadow 
Camo 
Pant Water   Grass Rubber Dirt Tree Bark 

Steel 
Glass    Trees    Side 

Steel 
Bumper Canvas 

0.3491 0.3151 0.2708   0.4467 0.2717 0.3861 0.4534 0.5005   0.4313  0.3358 0.2536 0.2997 

Table 12: Spectral Library for Sharpening Band (Forest) 

Roof                               New 
Grass   Water   Gravel   Loam    Trees    Asph 

Old 
Asph    Concr   Glass   Shingle 

Wood 
Brick    (Blue) 

Wood 
(Red) 

Wood 
(Gm) 

Wood 
(Grav) 

0.0749   0.0016   0.2012   0.1292   0.1567   0.0978 0.1837   0.3461   0.0672    0.4323 0.0853   0.2573 0.2320 0.0807 0.5273 

Table 13: Spectral Library for Sharpening Band (Rochester) 

Desert 
Pavement 

Disturbed Desert 
Pavement 

Silty 
Road    Sand Vegetation 

Painted 
Steel Shadow Canvas 

0.1908 0.3373 0.3687   0.4093 0.1658 0.3365 0.0546 0.3552 

Table 14: Spectral Library for Sharpening Band (DAEDALUS) 

♦    Desert Pavement 

—E~ Disturbed Desert Pavement 

Road 

—*£— Silty Sand 
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Sharpening Band 

Figure 25: Spectral Curves for Sharpening Bands (HYDICE) 
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Band Desert Pavement 
Disturbed Desert 

Pavement Road Siltv Sand Veqetation 
Painted 

Steel Shadow Canvas 

1 

2 

3 

0.1600 

0.1866 

0.3048 

0.2401 

0.2872 

0.3988 

0.2710 

0.2883 

0.4111 

0.3846 

0.4273 

0.4914 

0.2754 

0.5949 

0.1088 

0.7600 

0.5991 

0.3471 

0.0568 

0.0631 

0.0864 

0.5570 

0.5665 

0.6108 

Table 15: Spectral Library for Sharpening Bands (HYDICE) 

3.8 Error Metrics 

Error metrics were used to determine the efficiency of the algorithms. The fusion algorithm was 

evaluated by two metrics (effective RMS and effective edge RMS). These metrics allowed "validation" of the 

fusion routines by comparing average RMS values with those obtained by Braun (1992). The fraction maps 

were evaluated using the squared error metric proposed by Gross (1996). The squared error measurements were 

used to rank the output of the three image enhancement methods. 

The images were also evaluated visually. Although a visual evaluation does not yield a numerical 

output, subjective observations were also helpful in evaluating the methods. When dealing with the real images, 

the visual evaluation was the only method available. 

3.8.1 Squared Error 

The use of SIG images provided an excellent opportunity to use a single error metric to compare the 

results. A squared error (SE) was calculated for each set of fraction maps. 

SE   =    ^~X     X(/'truth ~ ftes,)1 Eq.  54 
■^ pixels materials 

where N is the number of pixels in the image. The summation over the pixels included the entire image and was 

performed for the entire library of materials. Examination of the relative magnitude of this error provided a 
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measure of the match of the test fractions to the truth fractions. Errors of both commission and omission were 

measured by this metric. 

3.8.2 Effective RMS 

The efficiency of the fusion algorithm was judged by determining the root mean squared (RMS) 

difference between the fused image and higher resolution multispectral imagery. For example, the 16 m GIFOV 

multispectral images fused to 8 m GIFOV were compared to 8 m multispectral imagery. 

The RMS error in the i* band between the fused image and the truth image fe) is given by 

X(HRXSi(n)-Truth; (n))2 

£i    =    V N ,   i=l....k Eq. 55 

where k is the number of bands in the image. The final effective RMS for the image is the average RMS of all 

the bands 

1   k 

RMSeffective   =   T^£i Eq.   56 
ki = i 

3.8.3 Effective Edge RMS 

An effective RMS calculation was also performed in the vicinity of edges in the image. The edge 

finding routine was original code written by Dave Schlingmeier (1997). Edges are found using convolution of 

the image with Sobel, Roberts, Prewitt, Frei-Chen, and Laplacian operators. Several operators are used to 

prevent occurrences of isolated pixels, ensuring the resulting edge map contains mostly closed contours. The 

histogram of the summed-edge image is then used to determine a threshold. Values above the threshold are set 

to 255 and all others are set to 0. Finally, these edge pixels are grown into a 3x3 cube. The result is a binary 

edge mask where non-zero pixels occur within a two-pixel vicinity of edges. The edge mask is employed on the 
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HRXS output and "truth" images. The effective edge RMS was calculated as in equations 55 and 56 using the 

masked images as inputs. 

3.9 Generating Output Images 

After degrading the images to the proper resolutions, the next step was to fuse the images using both 

the unmix/sharpen and the sharpen(fuse)/unmix methods. 

3.9.1 Fusion 

Computer routines were written to implement both the simple ratio and the global regression 

techniques. The algorithms were tested on simple 9 x 9 and 27 x 27 "images" to verify proper operation. As 

stated previously, the main problem of fusion occurs with poorly correlated data. Several panchromatic bands 

were tested. Since the data in all the images ranged from the VIS to the SWIR, there were essentially three 

choices of panchromatic band. A visible panchromatic image provided good performance in the VIS region, but 

poor performance in the NIR and SWIR. Panchromatic images created in the NIR and SWIR regions exhibited 

similar performance: good results were obtained in bands within and adjacent to these areas, with poorer results 

obtained in the remaining bands. 

The main difficulty is that real world objects can exhibit significantly different characteristics in the 

VIS, NIR, and SWIR. It is difficult to create a fusion engine which adequately performs in all regions. This 

was one of the main conclusions reached by Braun (1992). The fusion routines created for this work attempted 

the best performance, with the knowledge that the results would not be perfect. 

Since both simple ratio and global regression were implemented, one of Braun's observations was 

repeated and is briefly discussed here. 

Recall that the simple ratio method performs poorly in areas that are not well correlated. The global 

ratio method compensates for this but at the price of image resolution. Figure 26 shows fusion of the forest 

scene using both the simple ratio and global regression methods. The simple ratio output is shown in the pair of 
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images on the left. The lighter image is a band that is highly correlated with the panchromatic image (band 

10).  The darker image is a poorly con-elated band (band 15). The global regression output is shown in the pair 

on the right.  Band 10 is identical in both image methods, but note that band 10 for the simple ratio image is 

sharper and less blocky. Apparently, the simple ratio image possesses high frequency information that is not 

radiometncally correct. The global regression image is radiometrically accurate, but disappointingly blurry. 

However, since unmixing requires spectral precision, the global regression was used for this research. The 

fusion was performed using correlation thresholds of 0.85 and 0.90. 

WM 
HHH 

! ',  ■;.,■" ■■■■-'   ■■*»   : .■/ - ' llMUtfeä&ii*&ii<ftii<£.<u<«. 
,/.';''*r'J.-'ü .■■■!;■  :   - 1         HIHK 

J^^^HHUMI 

HIHI 
'   <*%- K 

l    mi 
Figure 26:  Comparison of Output from Simple Ratio and Global Regression Methods 

The program flow for fusion is shown in Figure 27. The header file contains all the useful data 

(filenames, thresholds, etc.) used to perform fusion.  See Figure 28 for a sample header file. 

GLOBAL.PRO 

READBIP.PRO 
READBIL.PRO       |- 

(AS REQUIRED) 

GET DATA.PRO PANAVG.PRO 
~ 

ERRORCHK.PRO QUICKERR.PRO EDGE  RMS.PRO CALC  TIM.PRO 

EDGER5.PRO     I     QUICKERR.PRO 

Figure 27:  Fusion Program Flow Diagram 
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The global regression routine proceeds as follows: 

1. Read "header" information. Program: get_data.pro. 

2. Assign initial variables, read in low-resolution multispectral (LRXS), high-resolution panchromatic 

(HRP), and LRXS class map images, and calculate averaged panchromatic image. Program: 

panavg.pro. (readbil.pro, and readbip.pro used as required when reading images that are band 

interleaved by line — BIL, or by pixel ~ BIP) 

3. Determine which bands are well correlated and perform ratio method for those bands. 

4. For remaining bands, perform a first order approximation for the band of the form 

LRXS(n) = a0 + a; HRPS + a2 LRXS(i) + ei Eq. 57 

where n is the band to be predicted, LRXS(i) is a previously predicted band, HRPS is the high- 

resolution panchromatic image averaged over a superpixel, and a0 through a2 are coefficients of the 

linear regression. The band (LRXS(i)) producing the lowest summed squared error is the best 

predictive band. Next, the predicted band obtained from equation 57 is correlated with the target 

band. If the correlation is below the user-determined threshold then go to step 5. If the correlation 

is above the threshold, then the coefficients are obtained for each class and the global regression is 

performed using 

HRXS(n) = a0 + a! HRP + a2 HRXS(i) Eq. 58 

where HRXS(i) is a previously predicted high-resolution band. Go to step 6. 

5.    Two bands are required for the solution. Perform regression for each class to obtain the 

coefficients, and perform the high-resolution prediction using 

HRXS(n) = a0 + a! HRP + a2 HRXS(i) + a3 HRXS(j) Eq. 59 

where HRXS(j) is a second previously predicted band. 
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6. Proceed to the next un-predicted band. Repeat steps 4 and 5 until all HRXS bands are predicted. 

7. Calculate the effective RMS error. Program: quickerr.pro 

8. Calculate the effective edge RMS error. Program: edgejrms.pro 

9. Calculate elapsed time. Program: calc_tim.pro 

10. End of program. 

LRXS_filename= c:\rsi\idl40\thesis\western\wrb_06.bsq 
pan_fiiename= c:\rsi\idl40\thesis\western\wrb_p03.bsq 

LRXS_class_filename= c:\rsi\idl40\thesis\western\wr_06c20.bsq 
TRUTH_filename= c:\rsi\idl40\thesis\western\wrb_03.bsq 

output_image= c:\rsi\idl40\thesis\output\fuse_out\western\wf0603.bsq 
output_data= c:\rsi\idl40\thesis\output\fuse_out\western\wf0603.dat 
LRXS_cols = 156 
LRXS_rows=116 
no_bands= 10 
mag=2 
no_classes= 20 
corr_threshold= 0.940 
print_to_screen= n 
make_edge_rms= y 
LRXS_filetype= BSQ 
pan_filetype= BSQ 
class_filetype= BSQ 
Long_log= n 

Figure 28: Sample Fusion Header 

3.9.2 Unmixing 

Computer routines were written to perform step wise unmixing as described by Gross (1996) and 

traditional unmixing. The strength of stepwise unmixing is its ability to search through a large database for the 

optimal endmembers to be unmixed. However, in order to directly compare the two unmixing methods, the 

spectral libraries used were small (containing fewer endmembers than the number of bands). 

The stepwise unmixing routines written by Gross (1996) in MATLAB were used as a starting point. 

Some of the essential components of the unmixing routines (least squares inequality, non-negative least squares, 
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etc.) were written and tested during the summer of 1996 by Daisei Konno as part of a funded research project 

performed by members of the DIRS lab at RIT. The remaining portions (stepwise regression routines) were 

"translated" from MATLAB to IDL®. MATLAB is an ideal application when high mathematical precision is 

desired. However, its performance with spectral images is awkward. This provided the incentive to transfer the 

routines to IDL®, which is more suited to (spectral) image processing. 

To validate the IDL® code, an image used by Gross (1996) served as input for both the IDL® and the 

MATLAB routines. The code was deemed to be validated when the IDL® code could duplicate the output of the 

MATLAB routines written by Gross. 

The program flow for stepwise unmixing is shown in Figure 29. The program flow for traditional 

unmixing is shown in Figure 30. The header file contains all the useful data (filenames, thresholds, etc.) used to 

perform unmixing. See Figure 31 for a sample header file. 

The material fractions were scaled from 0 to 255, with fractions less than -0.05 given the value of 253, 

fractions greater than 1.05 given the value of 255, and fractions between -0.05 and 1.05 scaled from 0 to 250. A 

tiled image similar to the multiple MRI images used by a doctor was also generated, which placed the material 

maps in order, left to right, and top to bottom (materials were in the same order as given in the library file). A 

fractions file was generated, containing the raw, unsealed fractions from unmixing to be used in the sharpening 

routine. 
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I    TRANS.PRO   | j SVDJFl1LLPRo"|   I    TRANS.PRO hC 
I    DINV.PRO1 

P^SIGNFJRD^- -|"   StZEl.PRO    ~| 

I SVD_FUlZpRo| 1    TR^s'pRcTl 

I TRANS.PRO 

Figure 29: Step wise Unmixing Program Flow Diagram 
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MK_ENVI.PRO 

READBIP.PRO 
READBILPRO 

(AS REQUIRED) 

ABS_ERR1.PR0 CALC.TIM.PRO GETJJATA.PRO GET_L1B.PR0 UNMIXPXLPRO 

H ANY.PRO      |   I   I    TRANS.PRO [   MKLEQ.PROJ jMKJMEQSO j 

INORMTPROJ—I   SEEU-ROI 

Jri 
I SVD.FULLPRO I 

SVD.FULLPRO 1 

I   SIGNIFTPROI ISEETPRO™!    I      sräTpRO™! f^D^ORTPRO j I 

I   j    NORM 1 PRO   I-'—I      PINV.PRO      | 

JTRANs'pROi- 

>-c 

j    SIGNF^PRcTl 1     SEEl!rao"""""] 

I SVD_FULLPRO I 1    TRANS PRO| 

!H SIZEl.PRO 1   I   ANY.PRO 

I   ANY.PRO   i ITMÄXI.PRO 9 

I   PINVPRo"! 1 smnjPRO 1 

JTRANS.PRCri--J--raROS.PRO 1 

Figure 30: Traditional Unmixing Program Flow Diagram 

The stepwise unmixing routine proceeds as follows: 

1. Read "header" information. Program: get_data.pro. 

2. Assign initial variables and read in low-resolution multispectral image (LRXS), and reflectance 

library, (readbip.pro and readbil.pro used as required). The algorithm may be performed in 

reflectance space (0 to 1) or Digital Count (DC) space (0 to 255). Both the multispectral image 

and the reflectance library must be in the same space. The routine was more stable when 
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calculations were performed in digital count space, so the spectral library was multiplied by 255 to 

obtain the desired transformation. 

INPUT_FILENAME= c:\rsi\idl40\thesis\western\wrb_03.bsq 
LIBRARY_FILENAME= c:\rsi\idl40\thesis\western\wrb_lib.dat 
REFLECTION_DATA=y 

TRUTH_FILENAME= c:\rsi\idl40\thesis\western\dum.dat 
MATERIALS_FILENAME= c:\rsi\idl40\thesis\output\unmix_out\western\wu03.bsq 
LOG_FILENAME= c:\rsi\idl40\thesis\output\unmix_out\western\wu03.dat 
LONG_LOG= n 
WIDTH=312 
HEIGHT=232 
NUM_BANDS=10 
NUM_ENDMEMBERS=8 
12 3 2 4 5 6 7 8;LIBRARY INDEX 
WINDOW_SIZE= 3 
UNMIX_CONSTRAINTS= 2 
F_ENTER_EXIT= 4.0 
PRINT_SCREEN= n 
MAKE_FRACTIONS=y 
INPUT_FILE_TYPE= BSQ 
TRUTH_FILE_TYPE= BSQ 
TRUTH EXISTS=n 

Figure 31: Sample Unmixing Header 

3.    For each pixel, obtain LRXS spectral vector and determine optimum endmembers for final (fully 

constrained) unmixing. Program: step_reg.pro. The step_reg.pro program is the heart of the 

stepwise method and its operation is now described in detail. 

The stepwise regression routine uses a sequential F-test to add and remove endmembers from the 

model. It contains an outer loop which controls the overall stepwise routine. Within the outer 

loop is a loop to determine if a variable should be added to the model, and another loop to 

determine if a variable should be removed from the model. 

The add-a-variable loop retains the existing model, and forms candidate supermodels, where each 

supermodel is formed by adding one of the unused variables to the existing model. The total Sum 

of Squares is calculated (SStotal = y'y, where y is the vector of digital counts for the pixel under 
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investigation). The Sum of Squares for each supermodel is calculated (SSsupeimodeI = z'Z'y, where z 

is the vector of fractions for the endmembers, and Z is a matrix containing the reflectance values 

for the endmembers). The fractions in z are obtained via single value decomposition. Note that 

for the first iteration, the value of z is [1]. The Sum of Squares due to the additional variable, 

SSextrajenn, Mean Square due to the extra term, MSexlKUemi, Sum of Squares due to the residuals, 

SSresidual, and Mean Square due to the residuals, MSresidual, are calculated for each supermodel as 

follows: 

^extrajerm  — SSsupermodel - SSmode] 

"^extra_term — SSextraterm/l 

^residual = SStotai - SSsupennodd 

MSresidual= SSresidual/(k-n-l) 

Eq. 60 

Eq. 61 

Eq. 62 

Eq. 63 

where k is the number of bands in the image, and n is the number of terms in the model. Note that 

for the first iteration, n = 1 and SSmodel = 0. The value of F-to-enter is determined for each 

supermodel by F_enter = MSextrateim/MSresidual. The supermodel which has the largest F-to-enter 

ratio (the model which best explains the variance) is then examined further. If the value of F-to- 

enter is above a user-selected threshold, then the additional variable is significant and added to the 

model. Since the model has been changed, the Sum of Squares for the model is changed by 

SSmodel= b'X'y 
Eq. 64 

where b is the vector of fractions in the new model (b = [1] after the first iteration), and X is a 

matrix of reflectance values for the endmembers in b. 

THe remove-a-variable loop retains the existing model, and forms candidate submodels, where 

each submodel is formed by removing one of the variables in the existing model. The Sum of 

Squares for each submodel is calculated (SSsubmodel= z'Z'y, where z is the vector of fractions for 

the endmembers in the submodel, and Z is a matrix containing the reflectance values for the 
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endmembers). The fractions in z are obtained via single value decomposition. The Sum of 

Squares due to the additional variable, SSextra_term - Mean Square due to the extra term, MSextra tenn, 

Sum of Squares due to the residuals, SSresidual, and Mean Square due to the residuals, MSresidual, are 

calculated for each submodel as follows 

ööextrajerm = SSm0<jei -zZy JJq    55 

■M^extrajerm — ^extra_term'l Eq.   66 

^residual = SStoai - SSmode] £q_   (fj 

MSreSidUai = SSresidua]/(k-n-l) Eq. 68 

The value of F-to-remove is calculated for each submodel by F_remove = MSextra_term/MSresidual. If the 

smallest of these F_remove values is below the user-selected threshold, then the corresponding 

endmember is removed from the model. The Sum of Squares for the model is updated using 

equation 64. 

To summarize, first all models with one-endmember models are examined, and the one with the 

highest F-to-enter value is retained. Next, all two-endmember supermodels containing the 

previously selected endmember are examined. Once again, the model with the largest F-to-enter 

value is examined. If the variable is added, then the add-a variable loop will execute again. Once 

three variables are present in the model, then a variable may be removed by the remove-a-variable 

loop. This process continues (controlled by the outer loop) until a variable is neither added nor 

removed. 

4.    Perform final unmixing (Fully Constrained). Program: unmixpxl.pro. 

For example, if stepwise selection returns three endmembers, and there are m bands, the results are 

LRXS = Rf 
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LRXSl 

LKXSn 

LRXS„ 

Rl,l   Äl,2   Äl,3 

^2,1   ^2,2  ^2,3 

Äm,l Rm,2Rm,3 

/l 

/2 

,/3 

Eq. 69 

where LRXS is a vector of digital counts of the multispectral image, R is the matrix of the 

reflectance values for the three materials, and f is the vector of fractions for the three materials. 

The equality constraints are 

d = Cf 

[1]= [HI] 

/i 

h 
L/3. 

Eq. 70 

and the inequality constraints are 

h <Gf 

0' 

0 

0 

-1 

-1 

-1 

1 0 o" 
0 1 0 

0 0 1 /l 

-1 0 0 h 

0 -1 0 UJ 
0 0 -1. 

Eq. 71 

The equality and inequality problems are solved as described in Appendices A and B. 

5. Proceed to next pixel, repeating steps 3-4. 

6. If truth maps are available, (when working with DIRSIG images) then calculate squared error. 

Program: abs-errl.pro. 

7. Make displayable byte image by scaling fraction maps to digital count space. Program: 

mk_disp.pro. 
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8. Make "tiled" output image similar to the multiple MRI (Magnetic Resonance Imaging) images 

used by a doctor. Program: mk_tif.pro 

9. Calculate elapsed time. Program: calc_tim.pro 

10. End of program. 

The traditional unmixing routine proceeds as follows: 

1. Read "header" information. Program: get_data.pro. 

2. Assign initial variables and read in LRXS, and reflectance library, (readbip.pro and readbil.pro 

used as required). 

3. For each pixel, perform final unmixing (Fully Constrained). Program: unmixpxl.pro. The 

example used in describing the final unmixing for the stepwise routine is applicable for traditional 

unmixing also. The only difference is that the number of endmembers to be unmixed is equal to 

the number of materials in the reference library, and is the same for every pixel. 

4. Proceed to next pixel, repeating step 3. 

5. If truth maps are available, (when working with DIRSIG images) then calculate squared error. 

Program: abs_errl.pro. 

6. Make displayable byte image by scaling fraction maps to digital count space. Program: 

mk_disp.pro. 

7. Make "tiled" output image. Program: mk_tif.pro 

8. Calculate elapsed time. Program: calc_tim.pro 

9. End of program. 

3.9.3 Sharpening 

Computer routines were written to perform sharpening as described by Gross (1996). As with 

unmixing, the MATLAB sharpening routines were used as a starting point. 
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Both partially constrained and fully constrained algorithms were written in IDL®. However, the fully 

constrained code was not finalized and validated. Gross states that the improvement obtained with fully 

constrained unmixing is not really worth the computational complexity and longer run times. For example, a 

simple (minimum texture involved) DIRSIG forest scene was unmixed at 16X and sharpened to 2X. When 

sharpened using partial constraints, the squared error was 0.3706 and the program required ten hours, 37 

minutes to complete. The fully constrained algorithm had a squared error of 0.3630 and took 98 hours, 10 

minutes! The slightly improved error did not merit increasing the run time by nearly a factor of ten. 

The partially constrained sharpening algorithm (in IDL®) was validated using the existing MATLAB 

code. When both routines generated identical output (from identical inputs) the IDL® code was deemed to be 

validated. 

The program flow for sharpening is shown in Figure 32. The header file contains all the useful data 

(filenames, thresholds, etc.) used to perform sharpening . See Figure 33 for a sample header file. 

L^5JSEE]   |™yJ™f;°J   [°^-™*™|   |jgJgACPR0J   fj«^«™0   £^°™"<°  ii   rMAjäuiPRÖ"]|   I     MKJIF.PRO    1   f 

|      ANY^PRO      | 1      SEE1.PRO     |   i      SIZE1. 

I    TRANS.PRO 

MKJTIF.PRO     1   1   MK_DISP.PRO   |   | LAGRANGE.PRO IE 

Figure 32: Sharpening Program Flow Diagram 

The material fractions were scaled from 0 to 255, with fractions less than -0.05 given the value of 253, 

fractions greater than 1.05 given the value of 255, and fractions between -0.05 and 1.05 scaled from 0 to 250. A 
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tiled image similar to the multiple MRI images used by a doctor was also generated, which placed the material 

maps in order, left to right, and top to bottom (materials were in the same order as given in the library file). 

LR_MAT_FILENAME= c:\rsi\idl40\thesis\output\unmix_out\western\wu24f.bsq 
LIBRARY_FILENAME= c:\rsi\idl40\thesis\western\wrb_plib.dat 
REFLECTION_DATA=y 

TRUTH_FILENAME= c:\rsi\idl40\thesis\western\dum.dat 

MATERIALS_FILENAME= c:\rsi\idl40\thesis\output\sharpen_out\western\ws2412.bsq 
LOG_FILENAME= c:\rsi\idl40\thesis\output\sharpen_out\western\ws2412 dat 
LONG_LOG= n 

HI_RES_FILENAME= c:\rsi\idl40\thesis\western\wrb_p12.bsq 
WIDTH= 39 
HEIGHT=29 
HR_NUM_BANDS=1 
NUM_ENDMEMBERS=8 
scale= 2 
CONSTRAINTS= 1 
NUM_SHARPENING_BANDS= 1 
0 SHARPENING BANDS 
PRINT_SCREEN= n 
TRUTH_EXISTS= n 

Figure 33: Sample Sharpening Header 

The sharpening routine proceeds as follows: 

1. Read "header" information. Program: get_data.pro. 

2. Assign initial variables and read in low-resolution fraction maps, HRP, and reflectance library. 

Program: hr_vec.pro (readbil.pro and readbip.pro as required). Sharpening may also be 

performed in either reflectance space or digital count space. There was no noted instability of the 

routines in digital count space vs reflectance space as was observed in unmixing, so sharpening 

was performed in reflectance space. The results are the same, and it is really "programmer's 

choice" of which space to use in performing calculations. 

3. For each pixel, obtain low-resolution fractions and corresponding digital counts from HRP. 
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4.    Create initial conditions and constraint vectors/matrices. Program: ini_cond.pro. For example, at 

a sharpening scale factor of 2X for three endmembers, the result is 

HRP = Rpf 

HRPX 

HRP2 

HRP3 

HRPA 

RP1RP2Rp3 000 000 000 

0 0 0 RP|1RP|2Rp^ 0 0 0 0 0 0 

0     0     0      0     0     0    RP1RP2 Rp3    0     0     0 
/ 

Eq. 72 

ooo    ooo    ooo  Rp,iRp,2 Rp,2. 

where HRP is a vector of digital counts in the high-resolution sharpening band, R is the matrix of 

panchromatic reflectance values for the three materials, and / is a vector of the fractions for the 

endmembers in the four subpixels in the high-resolution band. This vector in long form is (in 

order to save space on the page, the transpose will be written) 

J     = |/l,l   ^2,1  /3,1  :   /l,2  fl,2  fl,2 :/l,3 fl,3 fi,3 :   f\A  fl,4 /*3,4J ^q.   ^3 

where the first subscript refers to the endmember, and the second subscript refers to the subpixel 

location. 

The consistency constraints are written as 

4/, 

4/2 

4/3 

100:100:100; 100 

0 10:010i0 10:01 0 

001:001:001:001 

/ Eq. 74 

and the equality constraints are 

1   1   1:000:000:000 

OOOil   1   1!000:000 

000:000:1   1   1  ! 0 0 0 

/ Eq. 75 

The inequality constraint vectors and matrices are created also because the program was written 

during the development of the fully constrained sharpening routine. However, they are not needed 

for the partially constrained sharpening used for this research. 
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5.    If there is more than one material within superpixel, then there may be room for optimization. 

Send all information to the appropriate specific sharpening routine.   Program: lagrange.pro. 

Lagrange implements equation 47 in the form AX = B where 

A = 

B = 

Q    H' 

H     0 

Rpd 

X = Eq. 76 

where Q = R'pRp + <5t(n) (Note: I(n) is an n x n identity matrix and 8 is a small positive 

constant. The addition of the small portion along the diagonals prevents the algorithm from 

becoming "trapped"), H is the matrix of equality constraints, h is the vector of equality constraints, 

d is a vector containing the digital counts from the sharpening band(s), and x is a vector of the 

high-resolution fractions to be predicted.. The estimate is performed by 

X = A-'B Eq. 77 

The estimated high-resolution fractions will be the first n elements of the vector X (where n is the 

number of elements in /). 

6. Spatially assign the high-resolution fractions returned by sharpening program to the appropriate 

places in the high-resolution fraction maps. Program: hrjrac.pro. 

7. Proceed to next pixel, repeat steps 3 - 6. 

8. If truth fraction maps are available (when working with DIRSIG images) then read in truth 

fractions, and calculate squared error. 

9. Make displayable byte image by scaling fraction maps to digital count space. Program: 

mk_disp.pro 

80 



10. Make "tiled" output image. Program: mkjif.pro 

11. Calculate elapsed time. Program: calc_tim.pro 

12. End of program. 



4.   RESULTS 

Use of synthetic imagery allowed for quantitative evaluation of the algorithms discussed.   In addition, 

qualitative evaluations were performed for the real scenes. This section will present quantitative data derived 

from the synthetic imagery as well as qualitative evaluations of the fraction maps obtained for real and synthetic 

images. 

4.1 PC vs UNIX 

The algorithms generated were implemented on both an IBM-Compatible (PC) and a UNIX-based 

DEC Alpha workstation. The results from both platforms generally agreed to the nearest hundredth. It should 

be noted, however, that the algorithms ran longer on the PC. In addition, the difference in machine precision 

was notable between the two machines. Algorithms running on the PC would often crash because they 

encountered many floating point errors (floating division by zero) that were not encountered on the workstation. 

4.2 CPU TIME 

The fraction maps generated by the traditional unmix/sharpen method take a very long time to sharpen. 

It should be expected that each time resolution is doubled, the run time should quadruple (because the number of 

pixels to be processed increases by a factor of four). Run times for the forest scene are shown in Figure 34. For 

comparison, the squared errors are plotted along the bottom of the chart (See left-hand axis for numbers), and 

the run times are plotted along the chart of the top (See right-hand axis for numbers). Although the run times 

can increase when many users are on the system, the times indicated in the graph are typical of the relative run 

times for different resolutions. The run times for sharpening the traditionally unmixed fraction maps are very 

high. This would be acceptable if the squared error was comparable to the other two methods, but is it typically 
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much larger. The run times for Stepwise Unmix/Sharpen and Fuse/Unmix are comparable, so time should not be 

a significant factor in choosing one of these two methods over the other. 
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Figure 34: Squared Error and Run Times (Forest Scene) 

4.3 RMS Error 

The accuracy of the fusion algorithm was determined by examining the effective image-wide RMS and 

edge RMS numbers. The correlation thresholds used ranged from 0.85 for the Forest scene, to .90 for the 

Western Rainbow Scenes. Braun (1992) obtained RMS numbers for global regression that ranged from 4.24 to 

7.76, and edge RMS numbers from 6.14 to 51.92. Braun also noted that RMS increased with scale factor. RMS 
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numbers for the forest and desert scenes are shown in Figures 35 and 36. Note that the error increases as the 

scale factor increases as stated by Braun. The edge RMS is higher than the image-wide RMS, which is not 

surprising. Recall that the global regression produces softened edges for poorly correlated bands. Braun 

performed geometric registration as part of his research on image fusion. The effects due to warping the high- 

resolution PAN image to the low-resolution multispectral image cause an increase in the RMS figures. 

Registration was not required for the images used in this research, which should explain why the RMS figures 

obtained are lower than the average RMS numbers obtained by Braun. 
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Figure 35: RMS Errors for Fusion of Forest Image 
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Figure 36: RMS Errors for Fusion of DAEDALUS Image 

RMS figures were equal to or less than values obtained by Braun for all but the Rochester scene. The 

RMS values were significantly higher, as shown in Figure 37. The higher RMS figures are probably due to some 

of the modeling effects of DIRSIG. The Rochester scene looks synthetic and unreal, compared to the Forest 

scene. The colors in the Rochester scene seem much to bright and uniform, and "weather" effects are not visible, 

giving everything a "newly painted" look. This may account for the higher than expected RMS values. 
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Figure 37: RMS Errors for Fusion of Rochester Image 

4.4 Effects of Scale 

Both unmixing methods are sensitive to the scale of the images. The squared error increases as the 

resolution increases.   Figures 38 and 39 show the results of unmixing at various scales. Figures 40 and 41 

demonstrate the results of the entire process (fuse/unmix and unmix/sharpen) at various scales. The increase in 

error as resolution increases is not a surprising result. At low resolutions, the pixels are large and contain 

mixtures of many materials. Most mistakes made are in allocating the (sometimes small) fractions among the 

elements within the pixel, and the resulting errors are relatively small. As resolution increases, the "purity" of the 

pixels increases, and an individual pixel is more likely to contain a large amount of one material, and a small 

amount of one or two others. Consider traditional unmixing, which assigns fractions to all endmembers for each 

pixel. Forcing a mixture solution (with many elements) in a pixel which does not contain a mixture (or contains a 

mixture of two or three elements) can result in a fairly large error. Stepwise unmixing is also affected by the 

increase in purity of the pixels, but since it selects the most likely endmembers, it forces a mixture of fewer 
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elements than traditional unmixing, and can even select only one endmember, improving its results on completely 

pure pixels. 
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Figure 38: Unmixing Forest Scene at Various Resolutions 
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Figure 39: Unmixing Rochester Scene at Various Resolutions 
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Figure 40: Image Enhancement for Forest Scene at Various Scale Factors 
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Figure 41: Image Enhancement for Rochester Scene at Various Scale Factors 

4.5 Number of Endmembers 

The Rochester Scene may not be a good image to use in comparing traditional unmixing to Stepwise 

unmixing. This scene was generated using 32 materials (several types of wood, brick, and shingle). In order to 

compare the two unmixing methods, the number of endmembers was required to be less than or equal to 15 (the 

number of bands in the M-7 Image). This required combining materials with similar spectral curves into one 

material. The class map was changed appropriately also to contain the smaller number of combined materials. 

The unmixing results shown in Figure 41 do not match expectations. The performance of the Stepwise 

unmixing algorithm is poorer than traditional unmixing for the reduced library. It seems that combining spectral 

curves as was performed to enable comparison of the two methods degrades the performance of stepwise 

unmixing (and may improve the performance of traditional unmixing). Recall that the big advantage of stepwise 

unmixing is that it can be used with a large spectral library. In most cases, the user may not know exactly every 

material in a scene and may use several materials and let the algorithm determine which ones are present. This 
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type of operation is not possible using traditional unmixing. As a realistic metric of the "true" performance of 

the stepwise algorithm, stepwise unmixing was performed using the full 32-material spectral library, resulting in 

a squared error of 0.1530 (which shows that the unmixing works rather well). The squared error for the 32- 

material fraction maps cannot really be compared to the error for the 15-material library. A proposed revision to 

the squared error metric is discussed in the Conclusions Section. 

Although the Rochester scene does not allow a good comparison between the unmixing methods, it 

does highlight one of the limitations of traditional unmixing. The error in traditional unmixing decreases as the 

number of endmembers increases. Figure 42 compares the results of traditional unmixing of the Rochester scene 

using 5, 10, and 15 endmembers. The squared error for the 15-endmember case represents the lower limit for 

error in traditional unmixing. More endmembers cannot be used to decrease the error further because this 

method is limited by the number of bands in the image. Stepwise unmixing presents an opportunity to overcome 

this limitation. 
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Figure 42: Results of Traditional Unmixing for Rochester Scene with Various Numbers of Endmembers 
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4.6 Effects of Shadow 

Green (1993) states that a shadow endmember can be used to improve results. In most applications, 

shadow is not retained as a fraction map. The shadow is removed by distributing its fraction equally among the 

remaining fractions in the target pixel by 

^Shadow   +   ^pRemaining   ~  Total Remaining 

1 Eq. 78 
F = F *  Remaining_New Remaining , 

(Total-FShadow) 

where FShadow is the fraction of shadow in the pixel, FRemaining are the fractions for the remaining endmembers, 

and FRemainingNew are the new fractions for the remaining endmembers. As a numerical example, consider a 

simple case of a pixel containing shadow, trees, and grass in equal fractions. (Fshadow = Füee = Tgrass = 1/3). The 

new fractions for trees and grass become 

_   1*       l _   1 

tree_new   -  ^grass.new   ~~    , ~ 

The forest scene has many shaded areas, providing the opportunity to examine the effect of shadow. 

This scene was processed without a shadow endmember in the library.   These results were compared with those 

obtained when a shadow endmember was included in the library. The results are shown in Figures 43 through 

45, where the shadow has been removed prior to calculating the squared error. Surprisingly use of a shadow 

endmember had little effect when performing traditional unmixing. 
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Figure 43: Effect of Shadow Endmember (Stepwise Unmix/Sharpen) 
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Figure 44: Effect of Shadow Endmember (Fuse/Unmix) 
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Figure 45: Effect of Shadow Endmember (Traditional Unmix/Sharpen) 
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The effects of unmixing with the shadow endmember can also be seen by visually examining the 

fraction maps. Refer to Figures 47 through 52, which show results of the 24-06 case for the Forest scene. The 

key to the fraction maps is shown in Figure 46. Notice that the stepwise method performs much better when a 

shadow endmember is included. The fraction maps are "cleaner" and there are fewer stray pixels. So the use of 

the shadow endmember seems to improve the results of the selection algorithm. Use of a shadow endmember 

provided less significant improvements in the traditional unmixing method (See quantitative results in Figure 

45). As shown in Figures 49 and 50, the visual difference between the results with and without shadow are less 

pronounced for traditional unmixing than for the methods using stepwise unmixing. In the figures depicting 

fraction maps, values between -0.05 and 1.05 are displayed as grayscale, values greater than 1.05 are displayed 

as red, and values less than -0.05 are displayed as green. The occurrences of out of bounds" fractions are very 

rare in the unmixed fraction maps, and are generally produced by the sharpening process. The occurrences of 

negative out of bounds values (green) are more prevalent than those for positive out of bounds values (red). 

Observe that the soft features generated by the global regression fusion method show up in the fraction maps 

generated by the fuse/unmix method. For comparison, the truth fractions of the forest scene at a resolution of 

4X are shown in Figure 53. 
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Figure 46: Key to Forest Scene Fraction Maps 
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Figure 47: Forest Scene Fraction Maps (Stepwise Unmix/Sharpen) Without Shadow Endmembe 
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Figure 48:  Forest Scene Fraction Maps (Stepwise Unmix/Sharpen) With Shadow Endmember 
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Figure 49: Forest Scene Fraction Maps (Traditional Unmix/Sharpen) Without 

Shadow Endmember 
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Figure 50: Forest Scene Fraction Maps (Traditional Unmix/Sharpen) With 

Shadow Endmember 
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Figure 51: Forest Scene Fraction Maps (Fuse/Unmix Method) Without Shadow Endmemb er 
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Figure 52:  Forest Scene Fraction Maps (Fuse/Unmix Method) With Shadow Endmember 
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Figure 53: Forest Scene Truth Fraction Maps (4X) 

DIRSIG uses a ray tracing algorithm to generate synthetic scenes, modeling opaque as well as 

transmissive objects. Given a specific sun-sensor geometry the program does a realistic job of placing shadows 

within a scene. It may even create shadows cast by transmissive/opaque objects such as the leaves of a tree. 

Examination of data indicates that DIRSIG may not be as realistic as desired when creating a class map 

including shadows. The errors of image enhancement were calculated using a class map with shadows 

generated by DIRSIG. Next, the shadow was removed from the fraction maps, and the error was calculated 

using the class map without shadows.  The results are shown in Figures 54 and  55.  The high errors using the 

shadow class map (particularly at a resolution of 3X) indicate that DIRSIG may not be assigning shadow 

appropriately in the class map. If fractions were properly assigned, the error results using both the shadow class 

map and the class map without shadow would be much closer. 
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Figure 54: Error Calculated from Shadow Class Map vs Error Calculated from Class Map Without 

Shadow (one of two) 

102 



Case 

B stepwise/sharpen 

■ fuse/unmix 

D traditional/sharpen 

a. V 
£ o > 
9  "O O 
M 'S E 
*" m <" 

Figure 55: Error Calculated from Shadow Class Map vs Error Calculated from Class Map Without 

Shadow (two of two) 

4.7 Visual Evaluation 

Quantitative data was not available when processing the real images. The results of the image enhancement were 

examined visually, and a qualitative assessment was performed. Visually, the fused/unmixed fraction maps look 

better than those obtained via unmix/sharpen methods. As shown in Figures 57 through 59, the fuse/unmix 

fraction maps contain more high frequency data, and have a less blocky appearance than the unmix/sharpen 

fraction maps, and are preferred to those obtained via the unmix/sharpen method. The fraction maps shown are 

for the 24-04 case for the DAEDALUS scene. The key to the fraction maps is shown in Figure 56. 
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Figure 56:  Key to DAEDALUS Scene Fraction Maps 

Figure 57:  Fraction Maps for DAEDALUS Image (Stepvvise Unmix/Sharpen) 

Figure 58:  Fraction Maps for DAEDALUS Image (Traditional Unmix/Sharpen) 
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Figure 59:  Fraction Maps for DAEDALUS Image (Fuse/Unmix) 

The fraction maps generated by the traditional unmix/sharpen method are softer than those generated by the 

stepwise unmix/sharpen method. In addition, these fraction maps contain no fractions greater than 1.05. A few- 

fractions are less than -0.05, but not many. Note that the fraction maps for the stepwise/sharpen method contain 

many more pixels requiring fractions less than -0.05 and a few requiring fractions greater than 1.05. For 

comparison, the DAEDALUS image was degraded by 4X and then unmixed via the stepwise method. This 

was done in an attempt to compare the enhanced fraction maps with ■"truth" fraction maps.  The result is shown 

in Figure 60. 

Figure 60:  Fraction Maps for DAEDAUUS Image (Degraded to 4X) 

The fuse/unmix fraction maps look better than the unmix/sharpen maps for every image set. As an 

example for an urban scene, Rochester fraction maps are shown in Figures 62 through 64. This data represents 
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enhancing the image from 24X to 4X. The key to the fraction maps is shown in Figure 61.  For comparison, 

truth maps are shown in Figure 65. 
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Figure 61: Key to Rochester Scene Fraction Maps 
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Figure 62: Fraction Maps for Rochester Scene (Fuse/Unmix) 
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Figure 63:  Fraction Maps for Rochester Scene (Stepwise/Sharpen) 

Figure 64:  Fraction Maps for Rochester Scene (Traditional/Sharpen) 
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Figure 65: Rochester Scene Truth Fraction Maps (4X) 

Several resolutions were not employed for the HYDICE image.  Only one resolution was used, and 

shaipening was performed with multiple shaipening bands; fusion was performed using only one sharpening 

band. The HYDICE image was degraded by 16X and fused using a VIS panchromatic image at 2X resolution. 

The 16X image was unmixed and the fraction maps were shaipened using different combinations of the VIS, 

NIR, and SWIR shaipening bands.  See Figures 67 through 70 for the fraction maps. Use of multiple 

shaipening bands improves the results. As the number of shaipening bands increases, the shaipened fraction 

maps look better, with the best shaipened image obtained by using all three sharpening bands. The fraction 

maps where only shaipening band was used contain many pixels requiring "out of bounds" fractions. There are 

very few out of bounds pixels in the fraction maps generated using three shaipening bands. The key to the 

fraction maps is shown in Figure 66. 
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Figure 66:  Key to HYDICE Scene Fraction Maps 
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Figure 67:  Fraction Maps for HYDICE Image (Stepwise/Sharpen) Using One Sharpening Band 
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Figure 68:  Fraction Maps for HYDICE Image (Stepvvise/Sharpen) Using 

Three Sharpening Bands 
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Figure 69:  Fraction Maps for HYDICE Image (Traditional Sharpen) Using 

One Sharpening Band 

i 10 



Figure 70:  Fraction Maps for HYDICE Image (Traditional/Sharpen) Using 

Three Sharpening Bands 

Similar to other image enhancement scenarios, the Fuse/Unmix fraction contain more useful high-frequency 

information than the unmix/sharpen fraction maps. The fuse/unmix fraction map follows in Figure 71.  For 

comparison purposes, the original HYDICE scene was degraded to 2X to produce a -truth" image.  The results 

for stepwise unmixing performed on this scene are shown in Figure 72. 
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Figure 71:  Fraction Maps for HYDICE Image (Fuse/Unmix) 

Figure 72:  Fraction Maps for HYDICE Image (Degraded to 2X) 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this research was to compare the results produced by an unmix/sharpen process with 

those produced by a fuse/unmix process. In addition, a determination was to be made of which unmixing 

method (stepwise vs traditional) was the superior method. 

5.1 Conclusions Based on Quantitative Data (Truth) 

The strongest conclusion reached from the data is that fusing prior to unmixing produces fraction maps 

with more squared error than unmixing first and then sharpening. Many trials were performed with three 

different synthetic images (A simple forest scene without texture, which was used to optimize the operation of 

the unmixing algorithms; and a complex forest scene with texture and shadow, and the Rochester scene which 

served as the two final DIRSIG images for use in this research.). In over ninety percent of the trials, the 

fuse/unmix process produced fraction maps with greater squared error than the stepwise unmix/sharpen process. 

In the forest scene, the fuse/unmix fraction maps always had higher squared error than the 

stepwise/sharpen fraction maps. The same was true for the Rochester scene, however, strong conclusions should 

not be drawn based on this image. Recall that the Rochester scene looked synthetic, whereas the forest scene 

looked much more realistic, including such features as vignetting. The traditional unmix/sharpen process 

produced less error than the stepwise/sharpen process. This is a completely unexpected result, and may indicate 

that there is some artifact in the DIRSIG process of generating an urban scene that incorrectly models real-world 

processes. The unexpected results may also be due to the fact that the image was generated with 32 materials, 

which were then grouped (based on similar spectral curves) into fifteen materials. A trial could be performed 

using a real urban scene, but that would not really answer the question of whether DIRSIG is creating some 

artifacts in its modeling of urban scenes, because the differences in error values for the two methods are very 

small, and may not show up with a simple visual examination performed on the real scene (truth is generally not 
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available when using real scenes). Further study should be performed using high-fidelity urban scenes generated 

by DIRSIG. 

5.2 Conclusions Based on Qualitative Data (Visual) 

When success is determined by visual examination, the fuse/unmix process will generate visually 

superior fraction maps. These fraction maps contain more high frequency data, and generally have a less blocky 

appearance than the unmix/sharpen fraction maps. The soft and blocky artifacts of the global regression fusion 

method are often apparent in the fraction maps, but this is acceptable given the better high-frequency content. 

Using the unmix/sharpen process, the sharpened material maps are much better than the unsharpened 

unmixed material maps. In addition, sharpening is better than simply pixel-replicating the low-resolution 

material maps to achieve maps the same size as the sharpened results. This was demonstrated by Gross (1996). 

In some cases, the sharpened traditionally-unmixed maps may look better visually than the sharpened stepwise- 

unmixed maps. However, when the squared error is calculated, the stepwise-unmixed fraction maps always 

generate less squared error (except for the Rochester scene, and these differences may actually be caused by 

some DIRSIG artifacts as previously discussed). 

So the question of which method is better depends on why the user is performing the unmixing. If 

overall accuracy is desired, then the unmix/sharpen method is the definite choice. If applications requiring 

visually enhanced fraction maps are desired, then the fuse/unmix process is the obvious choice. 

5.3 Proposed Revision to Squared Error Metric 

The squared error metric proposed by Gross (1996) is a valid metric, but does not always provide a 

good measure of the performance of the algorithm. For example, one of the advantages of the stepwise method 

is that it can be used to unmix an image using a large spectral library, while traditional unmixing is limited by 

the number of bands in the image. The squared error metric does not take the number of endmembers unmixed 

into consideration, so does not allow for a complete description of the performance of the algorithms. Unmixing 
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a 15-band image with 40 endmembers and producing a squared error of 0.20 is better than unmixing the same 

image with 10 endmembers and producing a squared error of 0.20, but the error metric does not give that 

indication. It may be advantageous to create a "normalized" squared error by dividing by the number of 

endmembers as in 

SE =   — X    Xc/m«/,-/^)2 Eq. 79 
pixels materials 

where N is the number of pixels in the image, L is the number of endmembers in the reference library. This 

metric may provide a better measure of the performance of the unmixing algorithms, considering the number of 

endmembers unmixed. 

5.4 Recommendations 

Assuming that the user wants to obtain fraction maps at a higher resolution than the multi/hyperspectral 

images, the traditional unmix/sharpen method is not a recommended method of image enhancement. The 

computer run times become extremely long for sharpening at scale factors higher than 4X. In addition, the 

squared error for this method is generally higher than the error for stepwise unmixing followed by sharpening 

and for fusion followed by unmixing. Equivalent or improved results can be obtained using the 

stepwise/sharpen method or the fuse/unmix method. Traditional unmixing without further image processing 

(sharpening) is still a viable option, however the main drawback is that the number of endmembers to be 

unmixed is limited by the number of bands in the image. The squared error will also generally be higher than if 

the unmixing were performed via the stepwise method. 
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5.4.1 Algorithm Improvements 

A main focus for the unmixing algorithms used for this research was to implement them all in one 

popular programming language. The fusion code had been implemented in C, and required images to be in the 

ERDAS   .LAN format. The unmixing and sharpening algorithms were implemented in MATLAB. If the 

algorithms had been maintained in these languages, some small amount of error could be attributed to 

transforming images from a format readable by one language to a format read by the other language. 

Implementing all algorithms in IDL® eliminated this problem. In addition, IDL® is gaining in popularity as an 

image processing language, and the results here may be repeated by others in the remote sensing and image 

processing community. Since the main focus was to implement the algorithms in a common language, rather 

than optimization, there is definitely opportunity to improve the algorithms for fusion, sharpening, and 

unmixing. 

The fusion algorithm was written to use only one sharpening band, whereas the sharpening routine 

works well with multiple sharpening bands. Since the fusion algorithm is highly dependent on correlation 

between the low-resolution multispectral and high-resolution sharpening band, use of more sharpening bands, 

means a higher likelihood that one or more sharpening bands will be well correlated with the low-resolution 

image. This should be a relatively easy and straightforward change to implement. 

Stepwise unmixing is a "stateless" process, with no memory of the results obtained on the previous 

(adjacent) pixel. If the pixels in an image were scrambled, and unmixed in a different order, the end result 

would be exactly the same as if they were not scrambled. A good improvement would be to create a stepwise 

algorithm which remembers the materials obtained in adjacent pixels. For example, if a pixel was determined to 

consist of an equal mixture of grass and concrete, there is a likely chance that adjacent pixels will contain one or 

both of these materials. Using these previous answers should result in a noticeable improvement in run times. A 

slight modification (which would involve longer run times, but possible improvement in accuracy) would be to 

perform a two-pass stepwise selection. On the first pass, likely materials are assigned to all pixels in an image. 
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On the second pass, a neighborhood operation is performed, which employs some type of consistency checking 

within a selected neighborhood. For example, given a 3 x 3 neighborhood of pixels, the algorithm would ensure 

that the selected materials and their fractions are spatially located in a realistic manner. Consider the example 

shown in Figure 73, where the target pixel is in the center of the 3 x 3 neighborhood. The true image contains a 

boundary between grass and concrete at this point, with the pixels above containing grass, and the pixels below 

containing concrete. Logically, the target pixel should contain grass and/or concrete. If the algorithm guesses 

that the pixel contains a large amount of glass, (for example), the glass endmember should be eliminated 

because, based on surrounding pixels, the likelihood of a large amount of glass in the target pixel is rather low. 

For scenes with low to medium-frequency content, such a logical check should greatly improve the accuracy of 

the unmixing algorithm. 

Grass: 1.0 Grass 1.0 Grass 1.0 

Grass 0.60 
Concrete 0.40 

Grass 0.60 
Concrete 0.40 

Grass 0.60 
Concrete 0.40 

Concrete 1.0 Concrete 1.0 Concrete 1.0 

Figure 73: Sample Material Fractions in 3x3 pixel Neighborhood 

Improvements in the area of image fusion will not come completely from improving the algorithms 

developed for this research. Investigation into other areas related to this work may yield interesting answers 

also. 

As stated previously, the squared error metric can be improved. Modifications to the squared error 

should be investigated. Some metric should be developed which provides an evaluation of the accuracy of the 

algorithm, considers the size of the library, and considers whether materials are spatially located in a logical 

manner. Another disadvantage to the squared error metric is that, while it provides an adequate measure of 
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accuracy of the fraction maps, it provides no indication of the true visual quality. Recall that the fused/unmixed 

maps contain more high-frequency information, although they typically have higher squared error than the 

stepwise-unmixed/fused maps. Visually, there is not much difference between fraction maps with a squared 

error of 0.20 and 0.30 (unless one was generated by the fuse/unmix method and the other generated by the 

unmix/sharpen method). So the squared error may not give the user all the desired information in one number. 

Perhaps more than one metric should be used: one for accuracy, spatial location aspects of the fraction maps, 

and the other for visual quality of the maps. 

Unmixing requires a "smart" user to choose adequate endmembers, F-to-enter/exit thresholds, etc. 

Another goal of further work should be to reduce the need for a smart user. Little investigation was done into 

the statistics of the library endmembers. There may be some quick mathematical analysis performed on a 

candidate spectra to determine if it is an adequate endmember for use in unmixing. Endmembers should be 

spectrally distinct to ensure good stepwise unmixing, and a quick test which determines if an endmember is 

"sufficiently distinct" can reduce much of the iterative work involved in generating a good spectral library for 

unmixing. Another related area of investigation is to determine how "similar" spectral curves can be to still 

accomplish accurate unmixing. This would definitely involve hyperspectral data sets. For example, the curves 

for disturbed desert pavement and road in the HYDICE data set are very similar, but there are a few 

characteristic features ("bumps" or "dips" in the spectral curves) which allowed the algorithm to unmix the 

images with a (visually) high degree of accuracy. A knowledge of how strong a "bump" or "dip" in the spectral 

curves of the spectral library must be will also assist the user in selecting good endmembers for the unmixing 

library. 

Correlation was examined when dealing with the image fusion algorithms. An interesting question 

would be to investigate the effect the correlation between the LRXS and HRP has in sharpening the low- 

resolution fraction maps. The probable answer is that the distinctness of materials in the sharpening library is 
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more important than correlation, but the possible effects of correlation in sharpening may provide some 

interesting results. 
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APPENDIX A: SOLVING THE LSE PROBLEM 

Equality constraints reduce the number of free variables in the solution space. The Least Squares 

Equality (LSE) problem can be solved using an orthogonal transformation presented by Lawson & Hanson 

(1974). 

The function to be minimized is lly-Axll subject to Cx = d. Assuming Cx = d is consistent and n > p = 

rank(C), then an orthogonal decomposition may be used to partition C into a p x p submatrix Q and a p x (n-p) 

zero matrix 

CV = C V,  i    V2 =  c, iO EqA-1 
_nxp     n i (n-p). 

where V is a n x n matrix and when multiplied times C, partitions C into Q and a zero submatrix. A V matrix 

may be obtained by a singular value decomposition of C 

C = USV EqA-2 

where S is a p x n matrix of the singular values of C, and U is a p x p orthogonal matrix. 

The decomposition may be used to solve a p-dimensional subsystem 

w, = Cj'd 

where wi is a p-vector and Q can be inverted due to the decomposition. 

V is used to decompose the least square system into the same coordinates by 

EqA-3 

AV = A ^ :    V2 
.nxp      nx(n-p). imp     mx(n-p). 

EqA-4 

The least square problem is solved by first removing the effect of the transformed constraints from the measured 

values 

y = y - A,w i"i EqA-5 
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A lower dimensional least square problem (minimize IIA2 w2 - yll) is solved for the remaining (n-p) variables 

(w2) 

y = A2w 2W2 EqA-6 

w2 = (A2A2)-'A2y EqA.7 

The solution is transformed to the original coordinate system to obtain the solution of the original problem by 

x = Vw = [Vj:V2] 
w, 

ws EqA-8 
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APPENDIX B: SOLVING THE LSI PROBLEM 

While equality constraints reduce the number of free variables in the least squares problem, inequality 

constraints establish boundaries within the solution space. An iterative solution is required to identify active 

constraints and restrict those affected variables. On each iteration, the active constraints are treated as equality 

constraints to derive a minimum. The solution to the Least Squares Inequality (LSI) problem is described 

below. 

Minimize IIAx-yll subject toGx > h where G is an r x n matrix, and d is an r-vector. The problem can 

be divided into two special cases. The Non-Negative Least Squares (NNLS) is a least squares problem 

requiring all coefficients to be positive, 

NNLS: Minimize IIAx-yll subject to x>0 

and the Least Distance Programming (LDP) problem is a minimization with respect to the origin. 

LDP: Minimize llxll subject to Gx > h 

EqB- 1 

EqB-2 

Any LSI problem can be converted to a LDP problem using an appropriate coordinate transformation. 

A LDP problem may be solved with a NNLS algorithm. 

The heart of solving the LSI problem is the NNLS algorithm. The NNLS routine is used for a 

straightforward solution to the LDP problem. A NNLS algorithm is presented by Lawson & Hanson (1974). 

This algorithm consists of two loops. The outer loop brings variables in one at a time. The variable which 

would have the most positive coefficient is chosen. The loop repeats if the other coefficients remain positive, 

until all variables are included. If one of the coefficients becomes negative, the inner loop starts. This loop 

adjusts the step direction to keep the coefficients non-negative. Every time the inner loop is implemented, 
one 

of the coefficients is driven to zero. Therefore, a finite number of 
iterations of the inner loop will be required. 
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Since there are a finite number of variable combinations considered by the outer loop, the NNLS algorithm must 

converge. 

The LSI problem is solved in the following way: 

1. The constraints are decomposed and the dimensionality is reduced. 

2. The remaining problem is changed to a LDP problem. 

3. The LDP problem is changed to a NNLS problem. 

4. The NNLS problem is solved and the solution is transformed back to the original 

variables. 

A LSI problem (minimize IIAx-yll subject to Gx> h) is converted to a LDP problem by the orthogonal 

decomposition of the matrix A as in 

A = USV = U1JU2 
S     0 

0    0 V2. 
EqB-3 

where A is a m2 x n matrix of rank k, U is m2 x m2 orthogonal, V is n x n orthogonal, and S is k x k. If single 

value decomposition is used, S is a diagonal matrix containing the singular values of A. Through a change of 

variables, where 

x = Viy 

z - Sy - u;y 

G = GV^'1 

h = h - GU^y 

Problem LSI: minimize IIAx-yll subject to Gx> h 

EqB-4 

EqB-5 

is converted to 

Problem LDP: minimize llzll subject to Gz > h 
EqB-6 
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The least square problem is solved for z. The original coordinates are obtained by 

x = V,S   (z + U'jy) EqB-7 

A LDP problem is solved by forming a NNLS problem from the constraints. Define the (n+1) x 

matrix A and the (n+l)-vector y as 

m 

A = 

y = 

G' 

.h'. 

n 
1 EqB-8 

Now solve the NNLS problem 

Problem NNLS: minimize IIAx-yll subject to x> 0. 

Where the columns of A define boundary lines within the feasible solution space. The least square problem is 

solved for x, and the solution is the point in the feasible space with the minimum Euclidian distance to the 

origin. 

The original coordinates are obtained by 

EqB-9 
r = AU-y 

where U is the answer returned by the NNLS algorithm, and r is a (n+l)-vector. Divide r into an n-vector rl, 

and one extra term, rn+1 

r = n 
k+J 

-i 
x = —* 

Eq B- 10 

ln+l 

If the LSI problem has added equality constraints, then the equality constraints can be eliminated (using 

methods in Appendix A) with a corresponding decrease in the number of variables. Use a change of variables 
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" 

c Cj     0 

A V = Aj   A2 

_G_ Si 2^ 
_ m,     n-ml_ 

EqB-ll 

where rank(c) = mi < n. The vector wi is found by 

w, = C,d Eq B- 12 

where W] is a p-vector and Q can be inverted due to the decomposition. With the (n-p)-vector w2, the original 

problem is converted to 

Problem LSI: Minimize IIA2w2 - (y - Aiw^ll subject to G2w2 > h - GiWi 

After solving for w2, the solution to the original problem is found by 

Eq B- 13 

XrVw=   [Vi!V2] 
L,v2 

Eq B- 14 

To summarize: The LSI problem is solved by the following steps 

1. The constraints are decomposed and the dimensionality is reduced (Eq B- 11 , B- 12, and 

B- 13). 

2. The remaining problem is changed to a LDP problem (Eq B- 4 and B- 6). 

3. The LDP problem is changed to a NNLS problem (Eq B- 8). 

4. The NNLS problem is solved and the solution is transformed back to the original 

variables (The NNLS answer is transformed by Eq B- 10 to complete the LDP routine. 

This result is transformed by equation B- 7, and - if equality constraints were included - 

the final answer is obtained by equation B- 14). 

Although the solution to the LSI problem seems awkward, it can be coded as subroutines on a computer in a 

rather straightforward manner. 
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APPENDIX C: DATA SETS 

The use of synthetic imagery allowed quantitative data to be gathered for the image enhancement trials. 

The raw data used to derive the charts in the Results section follow. 

CASE       FUSE/UNMIX STEPWISE/SHARPEN TRADITIONAL/SHARPEN 
2X (24:12)       FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

3.02 

3.15 

0:00:33 

0.3195 

0:03:03 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2106 

0:02:56 

0.2803 

0:01:07 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3628 

0:04:53 

0.4331 

0:11:53 
4X(24:06)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.06 

4.24 

0:00:46 

0.3963 

0:41:06 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2106 

0:02:56 

0.3471 

0:14:14 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3628 

0:04:53 

0.4995 

2:03:32 
6X(24:04)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.55 

4.77 

0:01:44 

0.4476 

1:28:19 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2106 

0:02:56 

0.3888 

1:38:22 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3628 

0:04:53 

0.5407 

70:27:01 
8X(24:03)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.94 

5.22 

0:01:30 

1.5859 

2:04:18 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2106 

0:02:56 

1.3720 

59:29:05 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3628 

0:04:56 

1.8694 

402:48:16 
4x(12:03)         FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

3.08 

3.34 

0:01:59 

1.2894 

1:36:46 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2477 

0:13:55 

1.2720 

0:52:30 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.5070 

0:27:49 

2.1187 

12:00:41 
2X(06:03)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

2.61 

2.86 

0:02:15 

1.3311 

1:46:34 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3086 

0:56:39 

1.2536 

0:03:26 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.6036 

1:10:15 

2.2204 

3:39:23 

Table 16: Data for Forest Scene With Shadow Endmember (Uncorrected for Shadow) 
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CASE       FUSE/UNMIX STEPWISE/SHARPEN TRADITIONAL/SHARPEN 
2X (24:12)       FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

3.02 

3.15 

0:00:33 

0.2932 

0:03:03 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.1591 

0:02:56 

0.2323 

0:01:07 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3470 

0:04:53 

0.4239 

0:11:53 
4X(24:06)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.06 

4.24 

0:00:46 

0.3861 

0:41:06 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.1591 

0:02:56 

0.2895 

0:14:14 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3470 

0:04:53 

0.4789 

2:03:32 
6X(24:04)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.55 

4.77 

0:01:44 

0.4370 

1:28:19 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.1591 

0:02:56 

0.3177 

1:38:22 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3470 

0:04:53 

0.5055 

70:27:01 
8X(24:03)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

4.94 

5.22 

0:01:30 

0.4778 

2:04:18 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.1591 

0:02:56 

0.3363 

59:29:05 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3470 

0:04:56 

0.5243 

402:48:16 
4x(12:03)         FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

3.08 

3.34 

0:01:59 

0.4151 

1:36:46 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.2317 

0:13:55 

0.3385 

0:52:30 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.5131 

0:27:49 

0.6203 

12:00:41 
2X(06:03)        FUSE (RMS) 

FUSE (Edge RMS) 

Time (H:M:S) 

UNMIX (Squared Err) 

Time (H:M:S) 

2.61 

2.86 

0:02:15 

0.3936 

1:46:34 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.3132 

0:56:39 

0.3637 

0:03:26 

UNMIX (Squared Err) 

Time (H:M:S) 

SHARPEN (Squared Err) 

Time (H:M:S) 

0.6129 

1:10:15 

0.6658 

3:39:23 

Table 17: Data for Forest Scene With Shadow Endmember (Corrected for Shadow) 
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CASE       FUSE/UNMIX STEPWISE/SHARPEN TRADITIONAL/SHARPEN 
2X (24:12)      FUSE (RMS) 3.02 UNMIX (Squared Err) 0.1925 UNMIX (Squared Err) 0.3476 

FUSE (Edge RMS) 3.15 Time (H:M:S) 0:15:41 Time (H:M:S) 0:02:32 
Time (H:M:S) 0:00:33 

UNMIX (Squared Err) 0.3251 SHARPEN (Squared Err) 0.2657 SHARPEN (Squared Err) 0.4238 
Time (H:M:S) 0:59:11 Time (H:M:S) 0:00:24 Time (H:M:S) 0:06:44 

4X(24:06)       FUSE (RMS) 4.06 UNMIX (Squared Err) 0.1925 UNMIX (Squared Err) 0.3476 
FUSE (Edge RMS) 4.24 Time (H:M:S) 0:15:41 Time (H:M:S) 0:02:32 

Time (H:M:S) 0:00:46 

UNMIX (Squared Err) 0.4238 SHARPEN (Squared Err) 0.3228 SHARPEN (Squared Err) 0.4784 
Time (H:M:S) 2:32:28 Time (H:M:S) 0:11:45 Time (H:M:S) 2:57:54 

6X(24:04)       FUSE (RMS) 4.55 UNMIX (Squared Err) 0.1925 UNMIX (Squared Err) 0.3476 
FUSE (Edge RMS) 4.77 Time (H:M:S) 0:15:41 Time (H:M:S) 0:02:32 

Time (H:M:S) 0:01:44 

UNMIX (Squared Err) 0.4778 SHARPEN (Squared Err) 0.3510 SHARPEN (Squared Err) 0.5058 
Time (H:M:S) 3:48:30 Time (H:M:S) 2:37:48 Time (H:M:S) 19:39:55 

Table 18: Data for Forest Scene Without Shadow Endmember 
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CASE       FUSE/UNMIX STEPWISE/SHARPEN TRADITIONAL/SHARPEN 

2X (24:12)       FUSE (RMS) 1.80 

FUSE (Edge RMS) 2.48 Unmix Time (H:M:S) 0:01:40 Unmix Time (H:M:S) 0:01:13 
Time (H:M:S) 0:00:30 

Unmix Time (H:M:S) 0:08:47 Sharpen Time (H:M:S) 0:01:10 Sharpen Time (H:M:S) 0:05:11 
4X(24:06)        FUSE (RMS) 3.21 

FUSE (Edge RMS) 5.87 Unmix Time (H:M:S) 0:01:40 Unmix Time (H:M:S) 0:01:13 
Time (H:M:S) 0:01:10 

Unmix Time (H:M:S) 0:36:10 Sharpen Time (H:M:S) 0:48:19 Sharpen Time (H:M:S) 0:50:53 
6X(24:04)        FUSE (RMS) 3.95 

FUSE (Edge RMS) 8.42 Unmix Time (H:M:S) 0:01:40 Unmix Time (H:M:S) 0:01:13 
Time (H:M:S) 0:02:05 

Unmix Time (H:M:S) 1:02:05 Sharpen Time (H:M:S) 5:54:36 Sharpen Time (H:M:S) 94:49:03 
8X(24:03)        FUSE (RMS) 4.32 

FUSE (Edge RMS) 10.33 Unmix Time (H:M:S) 0:01:40 Unmix Time (H:M:S) 0:01:13 
Time (H:M:S) 0:05:17 

Unmix Time (H:M:S) 2:04:18 Sharpen Time (H:M:S) 33:17:04 Sharpen Time (H:M:S) 111:17:52 
4x(12:03)         FUSE (RMS) 3.16 

FUSE (Edge RMS) 8.02 Unmix Time (H:M:S) 0:16:11 Unmix Time (H:M:S) 0:12:11 
Time (H:M:S) 0:05:09 

Unmix Time (H:M:S) 1:03:19 Sharpen Time (H:M:S) 1:37:58 Sharpen Time (H:M:S) 1:47:37 
2X(06:03)        FUSE (RMS) 2.57 

FUSE (Edge RMS) 5.21 Unmix Time (H:M:S) 2:31:58 Unmix Time (H:M:S) 2:28:49 
Time (H:M:S) 0:07:39 

Unmix Time (H:M:S) 2:55:06 Sharpen Time (H:M:S) 0:31:25 Sharpen Time (H:M:S) 0:30:42 

Table 19: Data for DAEDALUS scene 
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CASE       FUSE/UNMIX STEPWISE/SHARPEN TRADITIONAL/SHARPEN 

2X (24:12)       FUSE (RMS) 15.63 UNMIX (Squared Err) 0.1096 UNMIX (Squared Err) 0.0900 

FUSE (Edge RMS) 16.60 Time (H:M:S) 0:13:30 Time (H:M:S) 0:03:53 

Time (H:M:S) 0:00:08 

UNMIX (Squared Err) 0.2471 SHARPEN (Squared Err) 0.2250 SHARPEN (Squared Err) 0.2058 

Time (H:M:S) 1:06:26 Time (H:M:S) 0:05:11 Time (H:M:S) 0:10:06 

4X(24:06)        FUSE (RMS) 20.77 UNMIX (Squared Err) 0.1096 UNMIX (Squared Err) 0.0900 

FUSE (Edge RMS) 22.69 Time (H:M:S) 0:13:30 Time (H:M:S) 0:03:53 

Time (H:M:S) 0:00:20 

UNMIX (Squared Err) 0.3520 SHARPEN (Squared Err) 0.3445 SHARPEN (Squared Err) 0.3246 

Time (H:M:S) 3:47:32 Time (H:M:S) 1:24:57 Time (H:M:S) 3:07:30 

6X(24:04)        FUSE (RMS) 22.58 UNMIX (Squared Err) 0.1096 UNMIX (Squared Err) 0.0900 

FUSE (Edge RMS) 24.65 Time (H:M:S) 0:13:30 Time (H:M:S) 0:03:53 

Time (H:M:S) 0:00:42 

UNMIX (Squared Err) 0.4175 SHARPEN (Squared Err) 0.4112 SHARPEN (Squared Err) 0.3909 

Time (H:M:S) 5:01:08 Time (H:M:S) 36:11:38 Time (H:M:S) 38:57:33 

8X(24:03)        FUSE (RMS) 24.13 UNMIX (Squared Err) 0.1096 UNMIX (Squared Err) 0.0900 

FUSE (Edge RMS) 26.24 Time (H:M:S) 0:13:30 Time (H:M:S) 0:03:53 

Time (H:M:S) 0:01:12 

UNMIX (Squared Err) 1.0384 SHARPEN (Squared Err) 1.0378 SHARPEN (Squared Err) 0.9906 

Time (H:M:S) 11:18:30 Time (H:M:S) 340:42:15 Time (H:M:S) 451:14:37 

4x(12:03)         FUSE (RMS) 22.11 UNMIX (Squared Err) 0.1457 UNMIX (Squared Err) 0.1272 

FUSE (Edge RMS) 23.94 Time (H:M:S) 0:31:17 Time (H:M:S) 0:09:46 

Time (H:M:S) 0:01:17 

UNMIX (Squared Err) 0.8004 SHARPEN (Squared Err) 0.8487 SHARPEN (Squared Err) 0.8061 

Time (H:M:S) 10:20:40 Time (H:M:S) 5:41:10 Time (H:M:S) 15:34:47 

2X(06:03)        FUSE (RMS) 18.95 UNMIX (Squared Err) 0.1871 UNMIX (Squared Err) 0.1713 
FUSE (Edge RMS) 21.45 Time (H:M:S) 3:25:50 Time (H:M:S) 0:49:37 

Time (H:M:S) 0:01:45 

UNMIX (Squared Err) 0.6720 SHARPEN (Squared Err) 0.6732 SHARPEN (Squared Err) 0.6371 
Time (H:M:S) 8:43:00 Time (H:M:S) 0:38:26 Time (H:M:S) 1:18:39 

Table 20: Data for Rochester Scene 
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